ON SOLVING ENERGY-DEPENDENT PARTITIONED REAL SYMMETRIC MATRIX EIGENVALUE PROBLEM BY A PARALLEL GENETIC ALGORITHM

被引:1
|
作者
Sharma, Rahul [1 ]
Nandy, Subhajit [1 ,2 ]
Bhattacharyya, S. P. [1 ]
机构
[1] Indian Assoc Cultivat Sci, Dept Phys Chem, Kolkata 700032, India
[2] Andrews High HS Sch, Kolkata 700031, India
来源
关键词
Symmetric matrix eigenvalue problem; parallel genetic algorithm; partitioning techniques; energy-dependent partitioning; Lowdin's method;
D O I
10.1142/S0219633608004428
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
An energy-dependent partitioning scheme is explored for extracting a small number of eigenvalues of a real symmetric matrix with the help of a serial as well as parallel genetic algorithm (GA). The proposed method is tested on two matrices (up to 2000 x 2000) with an increasing number of processors in a master- slave architecture. A comparison is made with the Jacobi-Davidson method in serial mode as implemented in the JDQZ-package. Different partition sizes are used. Traditionally used Lowdin's method is also tested in both serial and parallel modes. The advantages and disadvantages of the parallel GA-based method in solving the partitioned eigenvalue problem are analyzed.
引用
收藏
页码:1103 / 1120
页数:18
相关论文
共 50 条
  • [1] On solving energy-dependent partitioned eigenvalue problem by genetic algorithm: The case of real symmetric Hamiltonian matrices
    Rahul Sharma
    Subbajit Nandy
    S. P. Bhattacharyya
    Pramana, 2006, 66 : 1125 - 1130
  • [2] On solving energy-dependent partitioned eigenvalue problem by-genetic algorithm: The case of real symmetric Hamiltonian matrices
    Sharma, Rahul
    Nandy, Subbajit
    Bhattacharyya, S. P.
    PRAMANA-JOURNAL OF PHYSICS, 2006, 66 (06): : 1125 - 1130
  • [3] Parallel algorithm for solving the eigenvalue problem of symmetric band Toeplitz matrices
    Luo, Xiaoguang
    Li, Xiaomei
    Gongcheng Shuxue Xuebao/Chinese Journal of Engineering Mathematics, 16 (01): : 105 - 110
  • [4] A parallel algorithm for the symmetric eigenvalue problem
    Pavani, R
    DeRos, U
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1996, 76 : 495 - 496
  • [5] Parallel algorithm for the symmetric eigenvalue problem
    Pavani, R.
    De Ros, U.
    Zeitschrift fuer Angewandte Mathematik und Mechanik, ZAMM, Applied Mathematics and Mechanics, 76 (Suppl 1):
  • [6] Solving symmetric eigenvalue problem via genetic algorithms: Serial versus parallel implementation
    Nandy, Subhajit
    Sharma, Rahul
    Bhattacharyya, S. P.
    APPLIED SOFT COMPUTING, 2011, 11 (05) : 3946 - 3961
  • [7] The descent algorithm for solving the symmetric eigenvalue complementarity problem
    Zhu, Lin
    Lei, Yuan
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2023, 526 (01)
  • [8] An efficient parallel algorithm for the symmetric tridiagonal eigenvalue problem
    Forjaz, MA
    Ralha, R
    VECTOR AND PARALLEL PROCESSING - VECPAR 2000, 2001, 1981 : 369 - 379
  • [9] Parallel Generalized Real Symmetric-Definite Eigenvalue Problem
    Sims, James S.
    Ruiz, Maria Belen
    JOURNAL OF RESEARCH OF THE NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY, 2020, 125
  • [10] Parallel generalized real symmetric-definite eigenvalue problem
    Sims J.S.
    Ruiz M.B.
    Journal of Research of the National Institute of Standards and Technology, 2020, 25