Arithmetic of Catalan’s constant and its relatives

被引:0
|
作者
Wadim Zudilin
机构
[1] Radboud University,Department of Mathematics, IMAPP
关键词
Irrationality; Catalan’s constant; Dirichlet’s beta function; Hypergeometric series; 11J72; 11Y60; 33C20;
D O I
暂无
中图分类号
学科分类号
摘要
We prove that at least one of the six numbers β(2i)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta (2i)$$\end{document} for i=1,…,6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$i=1,\ldots ,6$$\end{document} is irrational. Here β(s)=∑k=0∞(-1)k(2k+1)-s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta (s)=\sum _{k=0}^{\infty }(-1)^k(2k+1)^{-s}$$\end{document} denotes Dirichlet’s beta function, so that β(2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta (2)$$\end{document} is Catalan’s constant.
引用
收藏
页码:45 / 53
页数:8
相关论文
共 50 条