Biclustering multivariate discrete longitudinal data

被引:0
|
作者
M. Alfó
M. F. Marino
F. Martella
机构
[1] Sapienza,
[2] University of Rome,undefined
[3] University of Florence,undefined
来源
Statistics and Computing | 2024年 / 34卷
关键词
Finite mixtures; Model-based clustering; Three-way data; Generalized linear models; EM algorithm;
D O I
暂无
中图分类号
学科分类号
摘要
A model-based biclustering method for multivariate discrete longitudinal data is proposed. We consider a finite mixture of generalized linear models to cluster units and, within each mixture component, we adopt a flexible and parsimonious parameterization of the component-specific canonical parameter to define subsets of variables (segments) sharing common dynamics over time. We develop an Expectation-Maximization-type algorithm for maximum likelihood estimation of model parameters. The performance of the proposed model is evaluated on a large scale simulation study, where we consider different choices for the sample the size, the number of measurement occasions, the number of components and segments. The proposal is applied to Italian crime data (font ISTAT) with the aim to detect areas sharing common longitudinal trajectories for specific subsets of crime types. The identification of such biclusters may potentially be helpful for policymakers to make decisions on safety.
引用
收藏
相关论文
共 50 条
  • [1] Biclustering multivariate discrete longitudinal data
    Alfo, M.
    Marino, M. F.
    Martella, F.
    [J]. STATISTICS AND COMPUTING, 2024, 34 (01)
  • [2] Finite mixture biclustering of discrete type multivariate data
    Fernandez, Daniel
    Arnold, Richard
    Pledger, Shirley
    Liu, Ivy
    Costilla, Roy
    [J]. ADVANCES IN DATA ANALYSIS AND CLASSIFICATION, 2019, 13 (01) : 117 - 143
  • [3] Finite mixture biclustering of discrete type multivariate data
    Daniel Fernández
    Richard Arnold
    Shirley Pledger
    Ivy Liu
    Roy Costilla
    [J]. Advances in Data Analysis and Classification, 2019, 13 : 117 - 143
  • [4] CLUSTERING FOR MULTIVARIATE CONTINUOUS AND DISCRETE LONGITUDINAL DATA
    Komarek, Arnost
    Komarkova, Lenka
    [J]. ANNALS OF APPLIED STATISTICS, 2013, 7 (01): : 177 - 200
  • [5] A generalization of functional clustering for discrete multivariate longitudinal data
    Lim, Yaeji
    Cheung, Ying Kuen
    Oh, Hee-Seok
    [J]. STATISTICAL METHODS IN MEDICAL RESEARCH, 2020, 29 (11) : 3205 - 3217
  • [6] HiBi - The Algorithm of Biclustering the Discrete Data
    Michalak, Marcin
    Lachor, Magdalena
    Polanski, Andrzej
    [J]. ARTIFICIAL INTELLIGENCE AND SOFT COMPUTING, ICAISC 2014, PT II, 2014, 8468 : 760 - 771
  • [7] Biclustering Multivariate Data for Correlated Subspace Mining
    Watanabe, Kazuho
    Wu, Hsiang-Yun
    Niibe, Yusuke
    Takahashi, Shigeo
    Fujishiro, Issei
    [J]. 2015 IEEE PACIFIC VISUALIZATION SYMPOSIUM (PACIFICVIS), 2015, : 287 - 294
  • [8] Semi-possibilistic Biclustering Applied to Discrete and Continuous Data
    Mahfouz, Mohamed A.
    Ismail, Mohamed A.
    [J]. ADVANCED MACHINE LEARNING TECHNOLOGIES AND APPLICATIONS, 2012, 322 : 327 - 338
  • [9] Biclustering Multivariate Time Series
    Cachucho, Ricardo
    Nijssen, Siegfried
    Knobbe, Arno
    [J]. ADVANCES IN INTELLIGENT DATA ANALYSIS XVI, IDA 2017, 2017, 10584 : 27 - 39
  • [10] AN APPROACH FOR JOINTLY MODELING MULTIVARIATE LONGITUDINAL MEASUREMENTS AND DISCRETE TIME-TO-EVENT DATA
    Albert, Paul S.
    Shih, Joanna H.
    [J]. ANNALS OF APPLIED STATISTICS, 2010, 4 (03): : 1517 - 1532