A generalization of functional clustering for discrete multivariate longitudinal data

被引:6
|
作者
Lim, Yaeji [1 ]
Cheung, Ying Kuen [2 ]
Oh, Hee-Seok [3 ]
机构
[1] Chung Ang Univ, Dept Appl Stat, Seoul, South Korea
[2] Columbia Univ, Dept Biostat, New York, NY USA
[3] Seoul Natl Univ, Dept Stat, Seoul 08826, South Korea
基金
新加坡国家研究基金会;
关键词
Binomial data; functional clustering; latent Gaussian process; model-based clustering; multivariate functional principal component analysis; Poisson data; PRINCIPAL COMPONENT ANALYSIS;
D O I
10.1177/0962280220921912
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
This paper presents a new model-based generalized functional clustering method for discrete longitudinal data, such as multivariate binomial and Poisson distributed data. For this purpose, we propose a multivariate functional principal component analysis (MFPCA)-based clustering procedure for a latent multivariate Gaussian process instead of the original functional data directly. The main contribution of this study is two-fold: modeling of discrete longitudinal data with the latent multivariate Gaussian process and developing of a clustering algorithm based on MFPCA coupled with the latent multivariate Gaussian process. Numerical experiments, including real data analysis and a simulation study, demonstrate the promising empirical properties of the proposed approach.
引用
收藏
页码:3205 / 3217
页数:13
相关论文
共 50 条
  • [1] CLUSTERING FOR MULTIVARIATE CONTINUOUS AND DISCRETE LONGITUDINAL DATA
    Komarek, Arnost
    Komarkova, Lenka
    [J]. ANNALS OF APPLIED STATISTICS, 2013, 7 (01): : 177 - 200
  • [2] A clustering algorithm for multivariate longitudinal data
    Bruckers, Liesbeth
    Molenberghs, Geert
    Drinkenburg, Pim
    Geys, Helena
    [J]. JOURNAL OF BIOPHARMACEUTICAL STATISTICS, 2016, 26 (04) : 725 - 741
  • [3] Biclustering multivariate discrete longitudinal data
    M. Alfó
    M. F. Marino
    F. Martella
    [J]. Statistics and Computing, 2024, 34
  • [4] Biclustering multivariate discrete longitudinal data
    Alfo, M.
    Marino, M. F.
    Martella, F.
    [J]. STATISTICS AND COMPUTING, 2024, 34 (01)
  • [5] Capabilities of R Package mixAK for Clustering Based on Multivariate Continuous and Discrete Longitudinal Data
    Komarek, Arnost
    Komarkova, Lenka
    [J]. JOURNAL OF STATISTICAL SOFTWARE, 2014, 59 (12): : 1 - 38
  • [6] Functional clustering of longitudinal data
    Chiou, Jeng-Min
    Li, Pai-Ling
    [J]. FUNCTIONAL AND OPERATORIAL STATISTICS, 2008, : 103 - +
  • [7] Bayesian consensus clustering for multivariate longitudinal data
    Lu, Zihang
    Lou, Wendy
    [J]. STATISTICS IN MEDICINE, 2022, 41 (01) : 108 - 127
  • [8] Clustering Multivariate Functional Data with Phase Variation
    Park, Juhyun
    Ahn, Jeongyoun
    [J]. BIOMETRICS, 2017, 73 (01) : 324 - 333
  • [9] Dynamic modeling for multivariate functional and longitudinal data
    Hao, Siteng
    Lin, Shu-Chin
    Wang, Jane-Ling
    Zhong, Qixian
    [J]. JOURNAL OF ECONOMETRICS, 2024, 239 (02)
  • [10] Functional clustering and identifying substructures of longitudinal data
    Chiou, Jeng-Min
    Li, Pai-Ling
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2007, 69 : 679 - 699