Multipartite Separability of Density Matrices of Graphs

被引:0
|
作者
Hui Zhao
Jing-Yun Zhao
Naihuan Jing
机构
[1] Beijing University of Technology,College of Applied Sciences
[2] North Carolina State University,Department of Mathematics
[3] Shanghai University,Department of Mathematics
关键词
Laplacian matrices; Partially symmetric; Degree symmetric; Separability;
D O I
暂无
中图分类号
学科分类号
摘要
A new layers method is presented for multipartite separability of density matrices from simple graphs. Full separability of tripartite states is studied for graphs on degree symmetric premise. The models are generalized to multipartite systems by presenting a class of fully separable states arising from partially symmetric graphs.
引用
收藏
页码:3112 / 3126
页数:14
相关论文
共 50 条
  • [41] A family of bipartite separability criteria based on Bloch representation of density matrices
    Xue-Na Zhu
    Jing Wang
    Gui Bao
    Ming Li
    Shu-Qian Shen
    Shao-Ming Fei
    Quantum Information Processing, 22
  • [42] A family of bipartite separability criteria based on Bloch representation of density matrices
    Zhu, Xue-Na
    Wang, Jing
    Bao, Gui
    Li, Ming
    Shen, Shu-Qian
    Fei, Shao-Ming
    QUANTUM INFORMATION PROCESSING, 2023, 22 (05)
  • [43] Separability and entanglement of two qubits density matrices using Lorentz transformations
    Ben-Aryeh, Y.
    Mann, A.
    INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2017, 15 (06)
  • [44] Cospectrality of multipartite graphs
    Abdollahi, Alireza
    Zakeri, Niloufar
    ARS MATHEMATICA CONTEMPORANEA, 2022, 22 (01)
  • [45] Path Separability of Graphs
    Diot, Emilie
    Gavoille, Cyril
    FRONTIERS IN ALGORITHMICS, 2010, 6213 : 262 - 273
  • [46] Multithreshold multipartite graphs
    Chen, Guantao
    Hao, Yanli
    JOURNAL OF GRAPH THEORY, 2022, 100 (04) : 727 - 732
  • [47] Family of multipartite separability criteria based on a correlation tensor
    Sarbicki, Gniewomir
    Scala, Giovanni
    Chruscinski, Dariusz
    PHYSICAL REVIEW A, 2020, 101 (01)
  • [48] CRITERION FOR K-SEPARABILITY IN MIXED MULTIPARTITE STATES
    Gabriel, Andreas
    Hiesmayr, Beatrix C.
    Huber, Marcus
    QUANTUM INFORMATION & COMPUTATION, 2010, 10 (9-10) : 829 - 836
  • [49] Separability problem for multipartite states of rank at most 4
    Chen, Lin
    Dokovic, Dragomir Z.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2013, 46 (27)