Multipartite Separability of Density Matrices of Graphs

被引:0
|
作者
Hui Zhao
Jing-Yun Zhao
Naihuan Jing
机构
[1] Beijing University of Technology,College of Applied Sciences
[2] North Carolina State University,Department of Mathematics
[3] Shanghai University,Department of Mathematics
关键词
Laplacian matrices; Partially symmetric; Degree symmetric; Separability;
D O I
暂无
中图分类号
学科分类号
摘要
A new layers method is presented for multipartite separability of density matrices from simple graphs. Full separability of tripartite states is studied for graphs on degree symmetric premise. The models are generalized to multipartite systems by presenting a class of fully separable states arising from partially symmetric graphs.
引用
收藏
页码:3112 / 3126
页数:14
相关论文
共 50 条
  • [1] Multipartite Separability of Density Matrices of Graphs
    Zhao, Hui
    Zhao, Jing-Yun
    Jing, Naihuan
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2018, 57 (10) : 3112 - 3126
  • [2] Separability of density matrices of graphs for multipartite systems
    Xie, Chen
    Zhao, Hui
    Wang, Zhi-Xi
    ELECTRONIC JOURNAL OF COMBINATORICS, 2013, 20 (04):
  • [3] Multipartite separability of Laplacian matrices of graphs
    Wu, Chai Wah
    ELECTRONIC JOURNAL OF COMBINATORICS, 2009, 16 (01):
  • [4] The tripartite separability of density matrices of graphs
    Wang, Zhen
    Wang, Zhixi
    ELECTRONIC JOURNAL OF COMBINATORICS, 2007, 14 (01):
  • [5] Separability criterion for multipartite quantum states based on the Bloch representation of density matrices
    Hassan, Ali Saif M.
    Joag, Pramod S.
    QUANTUM INFORMATION & COMPUTATION, 2008, 8 (8-9) : 773 - 790
  • [6] Separability criterion for density matrices
    Peres, A
    PHYSICAL REVIEW LETTERS, 1996, 77 (08) : 1413 - 1415
  • [7] Separability and Fourier representations of density matrices
    Pittenger, AO
    Rubin, MH
    PHYSICAL REVIEW A, 2000, 62 (03): : 9
  • [8] Separability criteria based on the realignment of density matrices and reduced density matrices
    Shen, Shu-Qian
    Wang, Meng-Yuan
    Li, Ming
    Fei, Shao-Ming
    PHYSICAL REVIEW A, 2015, 92 (04):
  • [9] Density Conditions For Triangles In Multipartite Graphs
    Adrian Bondy
    Jian Shen
    Stéphan Thomassé
    Carsten Thomassen
    Combinatorica, 2006, 26 : 121 - 131
  • [10] Density conditions for triangles in multipartite graphs
    Bondy, Adrian
    Shen, Jian
    Thomasse, Stephan
    Thomassen, Carsten
    COMBINATORICA, 2006, 26 (02) : 121 - 131