New low-order mixed finite element methods for linear elasticity

被引:0
|
作者
Xuehai Huang
Chao Zhang
Yaqian Zhou
Yangxing Zhu
机构
[1] Shanghai University of Finance and Economics,School of Mathematics
[2] Shanghai University of Finance and Economics,Network and Information Technology Center
来源
关键词
Finite element elasticity complex; Low-order finite elements for symmetric tensors; Mixed finite element method; Linear elasticity problem; Error analysis; 58J10; 65N12; 65N22; 65N30;
D O I
暂无
中图分类号
学科分类号
摘要
New low-order H(div)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${H}({{\text {div}}})$$\end{document}-conforming finite elements for symmetric tensors are constructed in arbitrary dimension. The space of shape functions is defined by enriching the symmetric quadratic polynomial space with the (d+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${(d+1)}$$\end{document}-order normal-normal face bubble space. The reduced counterpart has only d(d+1)2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${d(d+1)}^{{2}}$$\end{document} degrees of freedom. Basis functions are explicitly given in terms of barycentric coordinates. Low-order conforming finite element elasticity complexes starting from the Bell element, are developed in two dimensions. These finite elements for symmetric tensors are applied to devise robust mixed finite element methods for the linear elasticity problem, which possess the uniform error estimates with respect to the Lamé coefficient λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\lambda }$$\end{document}, and superconvergence for the displacement. Numerical results are provided to verify the theoretical convergence rates.
引用
收藏
相关论文
共 50 条
  • [31] A low-order, hexahedral finite element for modelling shells
    Key, SW
    Gullerud, AS
    Koteras, JR
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2004, 59 (07) : 923 - 944
  • [32] A suitable low-order, tetrahedral finite element for solids
    Key, SW
    Heinstein, MW
    Stone, CM
    Mello, FJ
    Blanford, ML
    Budge, KG
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1999, 44 (12) : 1785 - 1805
  • [33] A new low-order non-conforming mixed finite-element scheme for second-order elliptic problems
    Shi, Dongyang
    Wang, Caixia
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2011, 88 (10) : 2167 - 2177
  • [34] A NEW MIXED FINITE ELEMENT FOR THE LINEAR ELASTICITY PROBLEM IN 3D*
    Hu, Jun
    Ma, Rui
    Sun, Yuanxun
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2024,
  • [35] A FAMILY OF HIGHER-ORDER MIXED FINITE-ELEMENT METHODS FOR PLANE ELASTICITY
    ARNOLD, DN
    DOUGLAS, J
    GUPTA, CP
    NUMERISCHE MATHEMATIK, 1984, 45 (01) : 1 - 22
  • [36] LINEAR FINITE-ELEMENT METHODS FOR PLANAR LINEAR ELASTICITY
    BRENNER, SC
    SUNG, LY
    MATHEMATICS OF COMPUTATION, 1992, 59 (200) : 321 - 338
  • [37] Quasi-optimal adaptive hybridized mixed finite element methods for linear elasticity
    Li, Yuwen
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2021, 55 (05): : 1921 - 1939
  • [38] MIXED FINITE ELEMENT METHODS FOR LINEAR ELASTICITY AND THE STOKES EQUATIONS BASED ON THE HELMHOLTZ DECOMPOSITION
    Schedensack, Mira
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2017, 51 (02): : 399 - 425
  • [39] Two low-order nonconforming finite element methods for the Stokes flow in three dimensions
    Hu, Jun
    Schedensack, Mira
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2019, 39 (03) : 1447 - 1470
  • [40] Cut Finite Element Methods for Linear Elasticity Problems
    Hansbo, Peter
    Larson, Mats G.
    Larsson, Karl
    GEOMETRICALLY UNFITTED FINITE ELEMENT METHODS AND APPLICATIONS, 2017, 121 : 25 - 63