Finite element elasticity complex;
Low-order finite elements for symmetric tensors;
Mixed finite element method;
Linear elasticity problem;
Error analysis;
58J10;
65N12;
65N22;
65N30;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
New low-order H(div)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${H}({{\text {div}}})$$\end{document}-conforming finite elements for symmetric tensors are constructed in arbitrary dimension. The space of shape functions is defined by enriching the symmetric quadratic polynomial space with the (d+1)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${(d+1)}$$\end{document}-order normal-normal face bubble space. The reduced counterpart has only d(d+1)2\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${d(d+1)}^{{2}}$$\end{document} degrees of freedom. Basis functions are explicitly given in terms of barycentric coordinates. Low-order conforming finite element elasticity complexes starting from the Bell element, are developed in two dimensions. These finite elements for symmetric tensors are applied to devise robust mixed finite element methods for the linear elasticity problem, which possess the uniform error estimates with respect to the Lamé coefficient λ\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\lambda }$$\end{document}, and superconvergence for the displacement. Numerical results are provided to verify the theoretical convergence rates.
机构:
Ho Chi Minh City Univ Pedag, Dept Math, 280 An Duong Vuong St,Dist 5, Ho Chi Minh City 700000, VietnamHo Chi Minh City Univ Pedag, Dept Math, 280 An Duong Vuong St,Dist 5, Ho Chi Minh City 700000, Vietnam
Thi-Thao-Phuong Hoang
Duc Cam Hai Vo
论文数: 0引用数: 0
h-index: 0
机构:
VNU HCMC, Univ Sci, Dept Comp Sci, Fac Math & Comp Sci, Nguyen Van Cu St,Dist 5, Ho Chi Minh City 700000, VietnamHo Chi Minh City Univ Pedag, Dept Math, 280 An Duong Vuong St,Dist 5, Ho Chi Minh City 700000, Vietnam
Duc Cam Hai Vo
Thanh Hai Ong
论文数: 0引用数: 0
h-index: 0
机构:
VNU HCMC, Univ Sci, Dept Anal, Fac Math & Comp Sci, Nguyen Van Cu St,Dist 5, Ho Chi Minh City 700000, VietnamHo Chi Minh City Univ Pedag, Dept Math, 280 An Duong Vuong St,Dist 5, Ho Chi Minh City 700000, Vietnam
机构:
Zhengzhou Univ Light Ind, Coll Math & Informat Sci, Zhengzhou 450002, Peoples R ChinaZhengzhou Univ Light Ind, Coll Math & Informat Sci, Zhengzhou 450002, Peoples R China
Li, Zhenzhen
Chen, Shaochun
论文数: 0引用数: 0
h-index: 0
机构:
Zhengzhou Univ, Sch Math & Stat, Zhengzhou 450001, Peoples R ChinaZhengzhou Univ Light Ind, Coll Math & Informat Sci, Zhengzhou 450002, Peoples R China
Chen, Shaochun
Qu, Shuanghong
论文数: 0引用数: 0
h-index: 0
机构:
Zhengzhou Univ Light Ind, Coll Math & Informat Sci, Zhengzhou 450002, Peoples R ChinaZhengzhou Univ Light Ind, Coll Math & Informat Sci, Zhengzhou 450002, Peoples R China
Qu, Shuanghong
Li, Minghao
论文数: 0引用数: 0
h-index: 0
机构:
Henan Univ Technol, Coll Sci, Zhengzhou 450001, Peoples R ChinaZhengzhou Univ Light Ind, Coll Math & Informat Sci, Zhengzhou 450002, Peoples R China