Identification of essential genes associated with SARS-CoV-2 infection as potential drug target candidates with machine learning algorithms

被引:0
|
作者
Golnaz Taheri
Mahnaz Habibi
机构
[1] Stockholm University,Department of Computer and Systems Sciences
[2] Science for Life Laboratory,Department of Mathematics, Qazvin Branch
[3] Islamic Azad University,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) requires the fast discovery of effective treatments to fight this worldwide concern. Several genes associated with the SARS-CoV-2, which are essential for its functionality, pathogenesis, and survival, have been identified. These genes, which play crucial roles in SARS-CoV-2 infection, are considered potential therapeutic targets. Developing drugs against these essential genes to inhibit their regular functions could be a good approach for COVID-19 treatment. Artificial intelligence and machine learning methods provide powerful infrastructures for interpreting and understanding the available data and can assist in finding fast explanations and cures. We propose a method to highlight the essential genes that play crucial roles in SARS-CoV-2 pathogenesis. For this purpose, we define eleven informative topological and biological features for the biological and PPI networks constructed on gene sets that correspond to COVID-19. Then, we use three different unsupervised learning algorithms with different approaches to rank the important genes with respect to our defined informative features. Finally, we present a set of 18 important genes related to COVID-19. Materials and implementations are available at: https://github.com/MahnazHabibi/Gene_analysis.
引用
收藏
相关论文
共 50 条
  • [41] Potential complications and sequelae of SARS-CoV-2 infection
    Modi, Jyoti Nath
    Ghosh, Amrita
    Pal, Ranabir
    Mohan, Rajashekar
    Moscote-Salazar, Luis Rafael
    Wakode, Santosh
    Agrawal, Amit
    INDIAN JOURNAL OF RESPIRATORY CARE, 2021, 10 (01) : 4 - 9
  • [42] Multivariable Risk Modelling and Survival Analysis with Machine Learning in SARS-CoV-2 Infection
    Ciarmiello, Andrea
    Tutino, Francesca
    Giovannini, Elisabetta
    Milano, Amalia
    Barattini, Matteo
    Yosifov, Nikola
    Calvi, Debora
    Setti, Maurizo
    Sivori, Massimiliano
    Sani, Cinzia
    Bastreri, Andrea
    Staffiere, Raffaele
    Stefanini, Teseo
    Artioli, Stefania
    Giovacchini, Giampiero
    JOURNAL OF CLINICAL MEDICINE, 2023, 12 (22)
  • [43] Machine Learning of Serum Metabolic Patterns Encodes Asymptomatic SARS-CoV-2 Infection
    Wan, Qiongqiong
    Chen, Moran
    Zhang, Zheng
    Yuan, Yu
    Wang, Hao
    Hao, Yanhong
    Nie, Wenjing
    Wu, Liang
    Chen, Suming
    FRONTIERS IN CHEMISTRY, 2021, 9
  • [44] A machine learning tool for the diagnosis of SARS-CoV-2 infection from hemogram parameters
    Gomez-Rojas, S.
    Segura, G. Perez
    Olle, J.
    Gomez-Tarragona, G. Carreno
    Medina, J. Gonzalez
    Aguado, J. M.
    Guerrero, E. Vera
    Santaella, M. Poza
    Martinez-Lopez, J.
    JOURNAL OF CELLULAR AND MOLECULAR MEDICINE, 2023, 27 (22) : 3423 - 3430
  • [45] Current targets and drug candidates for prevention and treatment of SARS-CoV-2 (COVID-19) infection
    Goyal, Ramesh K.
    Rajiv, Jaseela Majeed
    Dhobi, Mahaveer
    Patel, Bhoomika
    Sharma, Kalicharan
    Apparsundaram, Subbu
    Apparsundaram, Subbu
    REVIEWS IN CARDIOVASCULAR MEDICINE, 2020, 21 (03) : 365 - 384
  • [46] Cameroonian medicinal plants as potential candidates of SARS-CoV-2 inhibitors
    Fouedjou, Romuald Tematio
    Chtita, Samir
    Bakhouch, Mohamed
    Belaidi, Salah
    Ouassaf, Mebarka
    Djoumbissie, Loris Alvine
    Tapondjou, Leon Azefack
    Qais, Faizan Abul
    JOURNAL OF BIOMOLECULAR STRUCTURE & DYNAMICS, 2022, 40 (19): : 8615 - 8629
  • [47] Gestational SARS-CoV-2 infection is associated with placental expression of immune and trophoblast genes
    Lesseur, Corina
    Jessel, Rebecca H.
    Ohrn, Sophie
    Ma, Yula
    Li, Qian
    Dekio, Fumiko
    Brody, Rachel I.
    Wetmur, James G.
    Gigase, Frederieke A. J.
    Lieber, Molly
    Lieb, Whitney
    Lynch, Jezelle
    Afzal, Omara
    Ibroci, Erona
    Rommel, Anna -Sophie
    Janevic, Teresa
    Stone, Joanne
    Howell, Elizabeth A.
    Galang, Romeo R.
    Dolan, Siobhan M.
    Bergink, Veerle
    De Witte, Lotje D.
    Chen, Jia
    PLACENTA, 2022, 126 : 125 - 132
  • [48] Antisense oligonucleotides to therapeutically target SARS-CoV-2 infection
    Qiao, Yuanyuan
    Wotring, Jesse
    Zhang, Charles
    Jiang, Xia
    Xiao, Lanbo
    Watt, Andy
    Gattis, Danielle D.
    Scandalis, Eli J.
    Freier, Susan E.
    Zheng, Yang
    Pretto, Carla Z.
    Ellison, Stephanie M.
    Swayze, Eric
    Guo, Shuling
    Sexton, Jonathan
    Chinnaiyan, Arul
    PLOS ONE, 2023, 18 (02):
  • [49] Metaviromic identification of discriminative genomic features in SARS-CoV-2 using machine learning
    Park, Jonathan J.
    Chen, Sidi
    PATTERNS, 2022, 3 (02):
  • [50] Hematuria Associated With SARS-CoV-2 Infection in a Child
    Almeida, Flavia Jacqueline
    Olmos, Rodrigo Diaz
    Oliveira, Danielle Bruna Leal
    Monteiro, Cairo Oliveira
    Thomazelli, Luciano Matsumiya
    Durigon, Edison Luiz
    Safadi, Marco Aurelio Palazzi
    PEDIATRIC INFECTIOUS DISEASE JOURNAL, 2020, 39 (07) : E161 - E161