CAD–CAM integration has involved either design with standard manufacturing features (feature-based design), or interpretation of a solid model based on a set of predetermined feature patterns (automatic feature recognition). Thus existing approaches are limited in application to predefined features, and also disregard the dynamic nature of the process and tool availability in the manufacturing shop floor. To overcome this problem, we develop a process oriented approach to design interpretation, and model the shape producing capabilities of the tools into tool classes. We then interpret the part by matching regions of it with the tool classes directly. In addition, there could be more than one way in which a part can be interpreted, and to obtain an optimal plan, it is necessary for an integrated computer aided process planning system to examine these alternatives. We develop a systematic search algorithm to generate the different interpretations, and a heuristic approach to sequence operations (set-ups/tools) for the features of the interpretations generated. The heuristic operation sequencing algorithm considers features and their manufacturing constraints (precedences) simultaneously, to optimally allocate set-ups and tools for the various features. The modules within the design interpretation and process planner are linked through an abstracted qualitative model of feature interactions. Such an abstract representation is convenient for geometric reasoning tasks associated with planning and design interpretation.