Effect of wall slip on laminar flow past a circular cylinder

被引:0
|
作者
Yan-cheng Li
Sai Peng
Taiba Kouser
机构
[1] Wuhan University of Technology,Key Laboratory of High Performance Ship Technology
[2] Ministry of Education,School of Naval Architecture, Ocean and Energy Power Engineering
[3] Wuhan University of Technology,School of Naval Engineering
[4] Wuxi Institute of Communications Technology,Shenzhen Key Laboratory of Complex Aerospace Flows, Department of Mechanics and Aerospace Engineering
[5] Southern University of Science and Technology,Department of Mathematics
[6] Government College University Faisalabad,undefined
来源
Acta Mechanica | 2022年 / 233卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
A numerical study of two-dimensional flow past a confined circular cylinder with slip wall is performed. A dimensionless number, Knudsen number (Kn), is used to describe the slip length of the cylinder wall. The Reynolds number (Re) and Knudsen number (Kn) ranges considered are Re = [1, 180] and Kn = [0, ∞), respectively. Time-averaged flow separation angle (θs¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{{\theta_{{\text{s}}} }}$$\end{document}), dimensionless recirculation length (Ls¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{{L_{{\text{s}}} }}$$\end{document}), and tangential velocity (uτ¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{{u_{\tau } }}$$\end{document}) distributed on the cylinder’s wall, drag coefficient (Cd¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \overline{{C_{{\text{d}}} }}$$\end{document}) and drag reduction (DR) are investigated. The time-averaged tangential velocity distributed on the cylinder’s wall fits well with the formula uτ¯=U∞·α1+βe-γπ-θ+δ·sinθ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{{u_{\tau } }} = U_{\infty } \cdot \left[ {\frac{\alpha }{{1 + \beta e^{{ - \gamma \left( {\pi - \theta } \right)}} }} + \delta } \right] \cdot \sin \theta$$\end{document}, where the coefficients (α, β, γ, δ) are related to Re and Kn, and U∞ is the incoming velocity. Several scaling laws are found, log(uτmax¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{{u_{\tau \max } }}$$\end{document}) ~ log(Re) and uτmax¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{{u_{\tau \max } }}$$\end{document} ~ Kn for low Kn (uτmax¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{{u_{\tau \max } }}$$\end{document} is the maximum tangential velocity on the cylinder’s wall), log(DR) ~ log(Re) (Re ≤ 45 and Kn ≤ 0.1) and log(DR) ~ log(Kn) (Kn ≤ 0.05). At low Re, DRv (the friction drag reduction) is the main source of DR. However, DRp (the differential pressure drag reduction) contributes most to DR at high Re (Re > ∼60\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sim60$$\end{document}) and Kn over a critical number. DRv is found almost independent of Re.
引用
收藏
页码:3957 / 3975
页数:18
相关论文
共 50 条
  • [31] LAMINAR NONISOTHERMAL FLOW OF A VISCOUS FLUID WITH SOLID PARTICLES PAST A ROTATING CIRCULAR CYLINDER
    Morenko, I. V.
    Fedyaev, V. L.
    [J]. JOURNAL OF ENGINEERING PHYSICS AND THERMOPHYSICS, 2014, 87 (03) : 566 - 572
  • [32] Laminar flow past a circular cylinder under the effect of nonstationary jet efflux to the near-wake region
    Zhdanov V.L.
    Isaev S.A.
    Baranova T.A.
    [J]. Journal of Engineering Physics and Thermophysics, 2004, 77 (5) : 1013 - 1021
  • [33] Effect of superhydrophobicity on the flow past a circular cylinder in various flow regimes
    Sooraj, P.
    Ramagya, Mallah Santosh
    Khan, Majid Hassan
    Sharma, Atul
    Agrawal, Amit
    [J]. JOURNAL OF FLUID MECHANICS, 2020, 897
  • [34] Lattice Boltzmann simulation to laminar pulsating flow past a circular cylinder with constant temperature
    Zheng, Youqu
    Li, Guoneng
    Guo, Wenwen
    Dong, Cong
    [J]. HEAT AND MASS TRANSFER, 2017, 53 (09) : 2975 - 2986
  • [35] Lattice Boltzmann simulation to laminar pulsating flow past a circular cylinder with constant temperature
    Youqu Zheng
    Guoneng Li
    Wenwen Guo
    Cong Dong
    [J]. Heat and Mass Transfer, 2017, 53 : 2975 - 2986
  • [36] Effect of high rotation rates on the laminar flow around a circular cylinder
    Stojkovic, D
    Breuer, M
    Durst, F
    [J]. PHYSICS OF FLUIDS, 2002, 14 (09) : 3160 - 3178
  • [37] Laminar flow instabilities of a grooved circular cylinder
    Derakhshandeh, Javad Farrokhi
    Gharib, Nima
    [J]. JOURNAL OF THE BRAZILIAN SOCIETY OF MECHANICAL SCIENCES AND ENGINEERING, 2020, 42 (11)
  • [38] Laminar flow instabilities of a grooved circular cylinder
    Javad Farrokhi Derakhshandeh
    Nima Gharib
    [J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2020, 42
  • [39] EFFECT OF THE SPANWISE DISCRETISATION ON TURBULENT FLOW PAST A CIRCULAR CYLINDER
    Kim, S.
    Wilson, P. A.
    Chen, Z.
    [J]. INTERNATIONAL JOURNAL OF MARITIME ENGINEERING, 2016, 158 : A69 - A75
  • [40] Effect of blockage on critical parameters for flow past a circular cylinder
    Kumar, B
    Mittal, S
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2006, 50 (08) : 987 - 1001