Effect of wall slip on laminar flow past a circular cylinder

被引:0
|
作者
Yan-cheng Li
Sai Peng
Taiba Kouser
机构
[1] Wuhan University of Technology,Key Laboratory of High Performance Ship Technology
[2] Ministry of Education,School of Naval Architecture, Ocean and Energy Power Engineering
[3] Wuhan University of Technology,School of Naval Engineering
[4] Wuxi Institute of Communications Technology,Shenzhen Key Laboratory of Complex Aerospace Flows, Department of Mechanics and Aerospace Engineering
[5] Southern University of Science and Technology,Department of Mathematics
[6] Government College University Faisalabad,undefined
来源
Acta Mechanica | 2022年 / 233卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
A numerical study of two-dimensional flow past a confined circular cylinder with slip wall is performed. A dimensionless number, Knudsen number (Kn), is used to describe the slip length of the cylinder wall. The Reynolds number (Re) and Knudsen number (Kn) ranges considered are Re = [1, 180] and Kn = [0, ∞), respectively. Time-averaged flow separation angle (θs¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{{\theta_{{\text{s}}} }}$$\end{document}), dimensionless recirculation length (Ls¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{{L_{{\text{s}}} }}$$\end{document}), and tangential velocity (uτ¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{{u_{\tau } }}$$\end{document}) distributed on the cylinder’s wall, drag coefficient (Cd¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \overline{{C_{{\text{d}}} }}$$\end{document}) and drag reduction (DR) are investigated. The time-averaged tangential velocity distributed on the cylinder’s wall fits well with the formula uτ¯=U∞·α1+βe-γπ-θ+δ·sinθ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{{u_{\tau } }} = U_{\infty } \cdot \left[ {\frac{\alpha }{{1 + \beta e^{{ - \gamma \left( {\pi - \theta } \right)}} }} + \delta } \right] \cdot \sin \theta$$\end{document}, where the coefficients (α, β, γ, δ) are related to Re and Kn, and U∞ is the incoming velocity. Several scaling laws are found, log(uτmax¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{{u_{\tau \max } }}$$\end{document}) ~ log(Re) and uτmax¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{{u_{\tau \max } }}$$\end{document} ~ Kn for low Kn (uτmax¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{{u_{\tau \max } }}$$\end{document} is the maximum tangential velocity on the cylinder’s wall), log(DR) ~ log(Re) (Re ≤ 45 and Kn ≤ 0.1) and log(DR) ~ log(Kn) (Kn ≤ 0.05). At low Re, DRv (the friction drag reduction) is the main source of DR. However, DRp (the differential pressure drag reduction) contributes most to DR at high Re (Re > ∼60\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sim60$$\end{document}) and Kn over a critical number. DRv is found almost independent of Re.
引用
收藏
页码:3957 / 3975
页数:18
相关论文
共 50 条
  • [1] Effect of wall slip on laminar flow past a circular cylinder
    Li, Yan-cheng
    Peng, Sai
    Kouser, Taiba
    [J]. ACTA MECHANICA, 2022, 233 (10) : 3957 - 3975
  • [2] Numerical simulation of laminar flow past a circular cylinder with slip conditions
    Seo, Il Won
    Song, Chang Geun
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2012, 68 (12) : 1538 - 1560
  • [3] The effect of slip distribution on flow past a circular cylinder
    Li, Dandan
    Li, Shichen
    Xue, Yahui
    Yang, Yantao
    Su, Weidong
    Xia, Zhenhua
    Shi, Yipeng
    Lin, Hao
    Duan, Huiling
    [J]. JOURNAL OF FLUIDS AND STRUCTURES, 2014, 51 : 211 - 224
  • [4] Laminar flow past a rotating circular cylinder
    Kang, SM
    Choi, HC
    Lee, S
    [J]. PHYSICS OF FLUIDS, 1999, 11 (11) : 3312 - 3321
  • [5] Laminar flow past an oscillating circular cylinder in cross flow
    Pham, Anh-Hung
    Lee, Chang-Yeol
    Seo, Jang-Hoon
    Chun, Ho-Hwan
    Kim, Hee-Jung
    Yoon, Hyun-Sik
    Kim, Jeong-Hu
    Park, Dong-Woo
    Park, Il-Ryong
    [J]. Journal of Marine Science and Technology, 2010, 18 (03): : 361 - 368
  • [6] LAMINAR FLOW PAST AN OSCILLATING CIRCULAR CYLINDER IN CROSS FLOW
    Pham, Anh-Hung
    Lee, Chang-Yeol
    Seo, Jang-Hoon
    Chun, Ho-Hwan
    Kim, Hee-Jung
    Yoon, Hyun-Sik
    Kim, Jeong-Hu
    Park, Dong-Woo
    Park, Il-Ryong
    [J]. JOURNAL OF MARINE SCIENCE AND TECHNOLOGY-TAIWAN, 2010, 18 (03): : 361 - 368
  • [7] Numerical simulation of laminar flow past a circular cylinder
    Rajani, B. N.
    Kandasamy, A.
    Majumdar, Sekhar
    [J]. APPLIED MATHEMATICAL MODELLING, 2009, 33 (03) : 1228 - 1247
  • [8] Steady laminar flow past a slotted circular cylinder
    Sharma, B.
    Barman, R. N.
    [J]. PHYSICS OF FLUIDS, 2020, 32 (07)
  • [9] EFFECT OF ROTATION RATES ON THE LAMINAR FLOW AND HEAT TRANSFER PAST A CIRCULAR CYLINDER
    Bouakkaz, R.
    Talbi, K.
    Ouazzazi, M.
    Khelili, Y.
    Salhi, F.
    [J]. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING, 2015, 32 (02) : 519 - 529
  • [10] Numerical Simulation of Rarefied Laminar Flow past a Circular Cylinder
    Celenligil, M. Cevdet
    [J]. PROCEEDINGS OF THE 29TH INTERNATIONAL SYMPOSIUM ON RAREFIED GAS DYNAMICS, 2014, 1628 : 220 - 227