Particle acceleration and transport in the inner heliosphere

被引:0
|
作者
Gang Li
机构
[1] China University of Geosciences (Beijing),School of Geophysics and Information Technology
[2] University of Alabama in Huntsville,Department of Space Science and CSPAR
来源
关键词
Solar energetic particles; Diffusive shock acceleration; Perpendicular diffusion coefficient;
D O I
暂无
中图分类号
学科分类号
摘要
In the solar system, our Sun is Nature’s most efficient particle accelerator. In large solar flares and fast coronal mass ejections (CMEs), protons and heavy ions can be accelerated to over ~GeV/nucleon. Large flares and fast CMEs often occur together. However there are clues that different acceleration mechanisms exist in these two processes. In solar flares, particles are accelerated at magnetic reconnection sites and stochastic acceleration likely dominates. In comparison, at CME-driven shocks, diffusive shock acceleration dominates. Besides solar flares and CMEs, which are transient events, acceleration of particles has also been observed in other places in the solar system, including the solar wind termination shock, planetary bow shocks, and shocks bounding the Corotation Interaction Regions (CIRs). Understanding how particles are accelerated in these places has been a central topic of space physics. However, because observations of energetic particles are often made at spacecraft near the Earth, propagation of energetic particles in the solar wind smears out many distinct features of the acceleration process. The propagation of a charged particle in the solar wind closely relates to the turbulent electric field and magnetic field of the solar wind through particle-wave interaction. A correct interpretation of the observations therefore requires a thorough understanding of the solar wind turbulence. Conversely, one can deduce properties of the solar wind turbulence from energetic particle observations. In this article I briefly review some of the current state of knowledge of particle acceleration and transport in the inner heliosphere and discuss a few topics which may bear the key features to further understand the problem of particle acceleration and transport.
引用
收藏
页码:1440 / 1465
页数:25
相关论文
共 50 条
  • [41] Time evolution of stream interaction region energetic particle spectra in the inner heliosphere
    Joyce, C. J.
    McComas, D. J.
    Schwadron, N. A.
    Christian, E. R.
    Wiedenbeck, M. E.
    McNutt, R. L.
    Cohen, C. M. S.
    Leske, R. A.
    Mewaldt, R. A.
    Stone, E. C.
    Labrador, A. W.
    Davis, A. J.
    Cummings, A. C.
    Mitchell, D. G.
    Hill, M. E.
    Roelof, E. C.
    Allen, R. C.
    Szalay, J. R.
    Rankin, J. S.
    Desai, M., I
    Giacalone, J.
    Matthaeus, W. H.
    Bale, S. D.
    Kasper, J. C.
    ASTRONOMY & ASTROPHYSICS, 2021, 650
  • [42] PARTICLE ACCELERATION AND TRANSPORT IN RECONNECTING PLASMAS
    LYNDSAY FLETCHER
    PANAGIOTA PETKAKI
    Solar Physics, 1997, 172 : 267 - 270
  • [43] Particle acceleration and transport in reconnecting plasmas
    Fletcher, L
    Petkaki, P
    SOLAR PHYSICS, 1997, 172 (1-2) : 267 - 270
  • [44] A transport model for the diffusive shock acceleration and modulation of anomalous cosmic rays in the heliosphere
    leRoux, JA
    Potgieter, MS
    Ptuskin, VS
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 1996, 101 (A3) : 4791 - 4803
  • [45] Operational inner magnetosphere particle transport and acceleration model (IMPTAM) for 1-300 keV electrons
    Ganushkina, Natalia
    ADVANCES IN SPACE RESEARCH, 2023, 72 (12) : 5416 - 5427
  • [46] Shock Acceleration of Ions in the Heliosphere
    Lee, Martin A.
    Mewaldt, R. A.
    Giacalone, J.
    SPACE SCIENCE REVIEWS, 2012, 173 (1-4) : 247 - 281
  • [47] First year of energetic particle measurements in the inner heliosphere with Solar Orbiter's Energetic Particle Detector
    Wimmer-Schweingruber, R. F.
    Janitzek, N. P.
    Pacheco, D.
    Cernuda, I
    Lara, F. Espinosa
    Gomez-Herrero, R.
    Mason, G. M.
    Allen, R. C.
    Xu, Z. G.
    Carcaboso, F.
    Kollhoff, A.
    Kuehl, P.
    von Forstner, J. L. Freiherr
    Berger, L.
    Rodriguez-Pacheco, J.
    Ho, G. C.
    Andrews, G. B.
    Angelini, V
    Aran, A.
    Boden, S.
    Bottcher, S., I
    Carrasco, A.
    Dresing, N.
    Eldrum, S.
    Elftmann, R.
    Evans, V
    Gevin, O.
    Hayes, J.
    Heber, B.
    Horbury, T. S.
    Kulkarni, S. R.
    Lario, D.
    Lees, W. J.
    Limousin, O.
    Malandraki, O. E.
    Martin, C.
    O'Brien, H.
    Mateo, M. Prieto
    Ravanbakhsh, A.
    Rodriguez-Polo, O.
    Sanchez Prieto, S.
    Schlemm, C. E.
    Seifert, H.
    Terasa, J. C.
    Tyagi, K.
    Vainio, R.
    Walsh, A.
    Yedla, M. K.
    ASTRONOMY & ASTROPHYSICS, 2021, 656
  • [48] Shock Acceleration of Ions in the Heliosphere
    Martin A. Lee
    R. A. Mewaldt
    J. Giacalone
    Space Science Reviews, 2012, 173 : 247 - 281
  • [49] Magnetospheric substorms and the sources of inner magnetosphere particle acceleration
    Antonova, EE
    INNER MAGNETOSPHERE: PHYSICS AND MODELING, 2005, 155 : 105 - 111
  • [50] Energetic particle acceleration at inner heliospheric shock waves
    Wu, CC
    Zank, GP
    SOLAR WIND NINE, 1999, 471 : 737 - 740