Effective conformal theory and the flat-space limit of AdS

被引:0
|
作者
A. Liam Fitzpatrick
Emanuel Katz
David Poland
David Simmons-Duffin
机构
[1] Boston University,Department of Physics
[2] Harvard University,Department of Physics
关键词
AdS-CFT Correspondence; Field Theories in Higher Dimensions; 1/N Expansion;
D O I
暂无
中图分类号
学科分类号
摘要
We develop the idea of an effective conformal theory describing the low-lying spectrum of the dilatation operator in a CFT. Such an effective theory is useful when the spectrum contains a hierarchy in the dimension of operators, and a small parameter whose role is similar to that of 1/N in a large N gauge theory. These criteria insure that there is a regime where the dilatation operator is modified perturbatively. Global AdS is the natural framework for perturbations of the dilatation operator respecting conformal invariance, much as Minkowski space naturally describes Lorentz invariant perturbations of the Hamiltonian. Assuming that the lowest-dimension single-trace operator is a scalar, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{O} $\end{document}, we consider the anomalous dimensions, γ(n, l), of the double-trace operators of the form \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{O}{\left( {{\partial^2}} \right)^n}{\left( \partial \right)^l}\mathcal{O} $\end{document}. Purely from the CFT we find that perturbative unitarity places a bound on these dimensions of |γ(n, l)| < 4. Non-renormalizable AdS interactions lead to violations of the bound at large values of n. We also consider the case that these interactions are generated by integrating out a heavy scalar field in AdS. We show that the presence of the heavy field “unitarizes” the growth in the anomalous dimensions, and leads to a resonance-like behavior in γ(n, l) when n is close to the dimension of the CFT operator dual to the heavy field. Finally, we demonstrate that bulk flat-space S-matrix elements can be extracted from the large n behavior of the anomalous dimensions. This leads to a direct connection between the spectrum ofanomalous dimensions in d-dimensional CFTs and flat-space S-matrix elements in d + 1 dimensions. We comment on the emergence of flat-space locality from the CFT perspective.
引用
收藏
相关论文
共 50 条
  • [21] GENERAL-SOLUTION FOR FLAT-SPACE LONGITUDINAL MOMENTUM
    BOWEN, JM
    GENERAL RELATIVITY AND GRAVITATION, 1982, 14 (12) : 1183 - 1191
  • [22] Corrections to flat-space particle dynamics arising from space granularity
    Urrutia, L. F.
    SPECIAL RELATIVITY: WILL IT SURVIVE THE NEXT 101 YEARS?, 2006, 702 : 299 - 345
  • [23] First law of entanglement entropy in flat-space holography
    Fareghbal, Reza
    Shalamzari, Mehdi Hakami
    PHYSICAL REVIEW D, 2019, 100 (10)
  • [24] Gravitational anomalies, entanglement entropy, and flat-space holography
    Hosseini, Seyed Morteza
    Veliz-Osorio, Alvaro
    PHYSICAL REVIEW D, 2016, 93 (04)
  • [25] Near-flat space limit of strings on AdS4×ℂℙ3
    M. Kreuzer
    R. C. Rashkov
    M. Schimpf
    The European Physical Journal C, 2009, 60 : 471 - 480
  • [26] Double copy structure and the flat space limit of conformal correlators in even dimensions
    Lipstein, Arthur E.
    McFadden, Paul
    PHYSICAL REVIEW D, 2020, 101 (12):
  • [27] Flat-space holography and stress tensor of Kerr black hole
    Baghchesaraei, Omid
    Fareghbal, Reza
    Izadi, Yousef
    PHYSICS LETTERS B, 2016, 760 : 713 - 719
  • [28] STRINGS IN A SHOCK-WAVE BACKGROUND AND GENERATION OF CURVED GEOMETRY FROM FLAT-SPACE STRING THEORY
    AMATI, D
    KLIMCIK, C
    PHYSICS LETTERS B, 1988, 210 (1-2) : 92 - 96
  • [29] Carrollian partition functions and the flat limit of AdS
    Kraus, Per
    Myers, Richard M.
    JOURNAL OF HIGH ENERGY PHYSICS, 2025, (01):
  • [30] Conformal flat space-time solutions in electromagnetic and scalar theory
    Guang, C
    ACTA PHYSICA SINICA, 1999, 48 (06) : 992 - 994