Influence of facet reflection of SOA on SOA-integrated SGDBR laser

被引:1
|
作者
Shu T. [1 ]
Yu Y. [1 ]
Lv H. [1 ]
Huang D. [1 ]
Shi K. [2 ]
Barry L. [2 ]
机构
[1] Wuhan National Laboratory for Optoelectronics, College of Optoelectronic Science and Engineering, Huazhong University of Science and Technology, Wuhan
[2] The Rince Institute, Dublin City University, Glasnevin
基金
高等学校博士学科点专项科研基金; 中国国家自然科学基金;
关键词
digital filter approach; sampled grating distributed Bragg reflector (SGDBR) laser; semiconductor optical amplifier (SOA); transmission-line laser model (TLLM);
D O I
10.1007/s12200-012-0287-5
中图分类号
学科分类号
摘要
A combined model of the transmission-line laser model (TLLM) and the digital filter approach is developed to simulate the shuttering characteristic of a semiconductor optical amplifier (SOA), which is integrated with a sampled grating distributed Bragg reflector (SGDBR) laser, to create a so called SOA-SGDBR laser. The SOA section acts as a shutter to blank the laser output during wavelength switching events. Simulated results show that the turn-on edge of the SOA blanking process will oscillate when the facet reflection of SOA is relatively high. This phenomenon is also observed by experiments. © 2012 Higher Education Press and Springer-Verlag Berlin Heidelberg.
引用
收藏
页码:390 / 394
页数:4
相关论文
共 50 条
  • [31] Thermal analysis of an SOA integrated in SG-DBR laser module
    Han, Ximeng
    Gao, Jinwei
    Wang, Hao
    Yu, Yonglin
    15TH INTERNATIONAL CONFERENCE ON NUMERICAL SIMULATION OF OPTOELECTRONIC DEVICES NUSOD 2015, 2015, : 107 - 108
  • [32] Thermal analysis of an SOA integrated in SG-DBR laser module
    Ximeng Han
    Jinwei Gao
    Hao Wang
    Yonglin Yu
    Optical and Quantum Electronics, 2016, 48
  • [33] High-Output-Power 1358-nm-Wavelength SOA-Integrated EADFB Laser (AXEL) for 25-Gbits 100-km Transmissions
    Shindo, Takahiko
    Kanazawa, Shigeru
    Nakanishi, Yasuhiko
    Chen, Mingchen
    Nada, Masahiro
    Yoshimatsu, Toshihide
    Kanda, Atsushi
    Hadama, Koichi
    Nakamura, Hirotaka
    Sano, Kimikazu
    JOURNAL OF LIGHTWAVE TECHNOLOGY, 2023, 41 (09) : 2815 - 2823
  • [34] Dual-facet coupling of SOA array on 4-μm silicon-on-Insulator implementing a hybrid integrated SOA-MZI wavelength converter
    Alexoudi, T.
    Fitsios, D.
    Kanellos, G. T.
    Pleros, N.
    Tekin, T.
    Cherchi, M.
    Ylinen, S.
    Harjanne, M.
    Kapulainen, M.
    Aalto, T.
    SILICON PHOTONICS IX, 2014, 8990
  • [35] Effect of the SOA residual facet reflectivity in SOA based harmonic mode-locked fiber ring laser - art. no. 60202Q
    Jiang, GY
    Wu, ZM
    Xie, YK
    Tian, JF
    Kong, HJ
    Xia, GQ
    Optoelectronic Materials and Devices for Optical Communications, 2005, 6020 : Q202 - Q202
  • [36] Influence of inhomogeneous current distribution on the thermal SOA of integrated DMOS transistors
    Denison, M
    Pfost, M
    Pieper, KW
    Märkl, S
    Metzner, D
    Stecher, M
    ISPSD '04: PROCEEDINGS OF THE 16TH INTERNATIONAL SYMPOSIUM ON POWER SEMICONDUCTOR DEVICES & ICS, 2004, : 409 - 412
  • [37] SOA-Booster Integrated Mach-Zehnder Modulator: Investigation of SOA Position
    Nielsen, Mads L.
    Tsuruoka, Kiyotaka
    Kato, T.
    Morimoto, T.
    Sudo, Shinya
    Okamoto, Takeshi
    Mizutani, Kenji
    Sakuma, H.
    Sato, Kenji
    Kudo, Koji
    JOURNAL OF LIGHTWAVE TECHNOLOGY, 2010, 28 (05) : 837 - 846
  • [38] A theoretical model for sampled grating DBR laser integrated with SOA and MZ modulator
    Dong, Lei
    Zhao, Shengzhi
    Jiang, Shan
    Liu, Shuihua
    OPTICS EXPRESS, 2009, 17 (19): : 16756 - 16765
  • [39] Improvement of quantum-well intermixing through adjusting P-doped layer for high-performance SOA-integrated EAM
    Chen, Yang-Jeng
    Fang, Yi-Hsin
    Hsu, Wen-Kuan
    Chen, Rih-You
    Chen, Cong-Long
    Chiu, Yi-Jen
    Lin, W.
    2019 IEEE PHOTONICS CONFERENCE (IPC), 2019,
  • [40] A 2.5 kHz Linewidth Widely Tunable Laser with Booster SOA Integrated on Silicon
    Tran, Minh A.
    Huang, Duanni
    Komljenovic, Tin
    Peters, Jonathan
    Bowers, John E.
    2018 IEEE INTERNATIONAL SEMICONDUCTOR LASER CONFERENCE (ISLC), 2018, : 73 - 74