We describe an efficient, low-threshold, continuous-wave (CW) and Q-switched operation of a Ho:YAG laser resonantly, single-pass pumped by a 20 W linearly polarized narrow line width Tm: fiber laser at the wavelength of 1,908 nm. At room temperature for an output coupler of 30 % transmission, a maximum continuous-wave output power of 13.3 W for 18.9 W of absorbed pump power was achieved, corresponding to a slope efficiency of 73 %. In a quasi continuous-wave pumping regime, for several output couplers slope efficiencies of almost 82 % were observed. For a Q-switched operation, a Brewster-cut acousto-optic modulator was used. In a CW pumping regime, the pulse repetition frequency (PRF) was changed from 4 to 15 kHz. Under a Q-switched operation, the maximum output power of 12.25 W in relation to 15 kHz PRF was obtained; however, the maximum peak power of almost 250 kW at the PRF of 4 kHz was demonstrated. In the best case, for 4 kHz PRF, pulse energies of 2.18 mJ with a 8.8 ns FWHM pulse width (one of the shortest pulse durations observed in holmium-doped Q-switched lasers) were achieved. The laser operated at the wavelength of 2,090.23 nm with the FWHM line width of 0.95 nm. The beam quality factor of M2 was measured to be below 1.42 in both X and Y axis.