The Chiral Domain of a Camera Arrangement

被引:0
|
作者
Sameer Agarwal
Andrew Pryhuber
Rainer Sinn
Rekha R. Thomas
机构
[1] Google Inc.,Department of Mathematics
[2] University of Washington,Fakultät für Mathematik und Informatik
[3] Universität Leipzig,undefined
关键词
Projective geometry; Structure from motion; Chirality; Multiview geometry;
D O I
暂无
中图分类号
学科分类号
摘要
We introduce the chiral domain of an arrangement of cameras A={A1,...,Am}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {A} = \{A_1,..., A_m\}$$\end{document} which is the subset of P3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {P}^3$$\end{document} visible in A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {A}$$\end{document}. It generalizes the classical definition of chirality to include all of P3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {P}^3$$\end{document} and offers a unifying framework for studying multiview chirality. We give an algebraic description of the chiral domain which allows us to define and describe the chiral version of Triggs’ joint image. We then use the chiral domain to re-derive and extend prior results on chirality due to Hartley.
引用
收藏
页码:948 / 967
页数:19
相关论文
共 50 条
  • [31] Dynamics of Domain Walls in Chiral Magnets
    Galkina, E. G.
    Ivanov, B. A.
    Kulagin, N. E.
    Lerman, L. M.
    Yastremskii, I. A.
    JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS, 2021, 132 (04) : 572 - 585
  • [32] Chiral domain walls move faster
    Brataas, Arne
    NATURE NANOTECHNOLOGY, 2013, 8 (07) : 485 - 486
  • [33] Chiral domain walls move faster
    Arne Brataas
    Nature Nanotechnology, 2013, 8 : 485 - 486
  • [34] Domain growth in chiral phase transitions
    Singh, Awaneesh
    Puri, Sanjay
    Mishra, Hiranmaya
    NUCLEAR PHYSICS A, 2011, 864 (01) : 176 - 202
  • [35] Dynamical depinning of chiral domain walls
    Moretti, Simone
    Voto, Michele
    Martinez, Eduardo
    PHYSICAL REVIEW B, 2017, 96 (05)
  • [36] Traveling domain walls in chiral ferromagnets
    Komineas, Stavros
    Melcher, Christof
    Venakides, Stephanos
    NONLINEARITY, 2019, 32 (07) : 2392 - 2412
  • [37] EFFECTIVE PROPERTIES OF A PERIODIC CHIRAL ARRANGEMENT OF IDENTICAL BIAXIALLY DIELECTRIC PLATES
    LAKHTAKIA, A
    VARADAN, VK
    VARADAN, VV
    JOURNAL OF MATERIALS RESEARCH, 1989, 4 (06) : 1511 - 1514
  • [38] A PERIODIC CHIRAL ARRANGEMENT OF THIN IDENTICAL BIANISOTROPIC SHEETS - EFFECTIVE PROPERTIES
    REESE, PS
    LAKHTAKIA, A
    OPTIK, 1990, 86 (02): : 47 - 50
  • [39] Robust estimation of camera motion in MPEG domain
    Gillespie, WJ
    Nguyen, DT
    TENCON 2004 - 2004 IEEE REGION 10 CONFERENCE, VOLS A-D, PROCEEDINGS: ANALOG AND DIGITAL TECHNIQUES IN ELECTRICAL ENGINEERING, 2004, : A395 - A398
  • [40] Camera Attribution Forensic Analyzer in the Encrypted Domain
    Pedrouzo-Ulloa, Alberto
    Masciopinto, Miguel
    Troncoso-Pastoriza, Juan Ramon
    Perez-Gonzalez, Fernando
    2018 10TH IEEE INTERNATIONAL WORKSHOP ON INFORMATION FORENSICS AND SECURITY (WIFS), 2018,