The Chiral Domain of a Camera Arrangement

被引:0
|
作者
Sameer Agarwal
Andrew Pryhuber
Rainer Sinn
Rekha R. Thomas
机构
[1] Google Inc.,Department of Mathematics
[2] University of Washington,Fakultät für Mathematik und Informatik
[3] Universität Leipzig,undefined
关键词
Projective geometry; Structure from motion; Chirality; Multiview geometry;
D O I
暂无
中图分类号
学科分类号
摘要
We introduce the chiral domain of an arrangement of cameras A={A1,...,Am}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {A} = \{A_1,..., A_m\}$$\end{document} which is the subset of P3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {P}^3$$\end{document} visible in A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {A}$$\end{document}. It generalizes the classical definition of chirality to include all of P3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {P}^3$$\end{document} and offers a unifying framework for studying multiview chirality. We give an algebraic description of the chiral domain which allows us to define and describe the chiral version of Triggs’ joint image. We then use the chiral domain to re-derive and extend prior results on chirality due to Hartley.
引用
收藏
页码:948 / 967
页数:19
相关论文
共 50 条
  • [1] The Chiral Domain of a Camera Arrangement
    Agarwal, Sameer
    Pryhuber, Andrew
    Sinn, Rainer
    Thomas, Rekha R.
    JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2022, 64 (09) : 948 - 967
  • [2] Stereo vision with arbitrary camera arrangement and with camera calibration
    Sanyo Electric Co, Ltd, Hirakata, Japan
    Syst Comput Jpn, 2 (47-56):
  • [3] SYNCHRONIZATION ARRANGEMENT FOR CAMERA RFK(5)
    AVERYANO.GA
    BOGDANOV, VE
    RAZZHIVI.AN
    ZHURNAL NAUCHNOI I PRIKLADNOI FOTOGRAFII, 1973, 18 (01): : 43 - 45
  • [4] Laparoscopic Camera Based on an Orthogonal Magnet Arrangement
    Garbin, Nicolo
    Slawinski, Piotr R.
    Aiello, Gregorio
    Karraz, Christina
    Valdastri, Pietro
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2016, 1 (02): : 924 - 929
  • [5] Chiral heteronanotubes: arrangement-dominated chiral interface states and conductivities
    Xu, Xiaodong
    Wei, Yadong
    Liu, Bingyi
    Li, Weiqi
    Zhang, Guiling
    Jiang, Yongyuan
    Tian, Wei Quan
    Liu, Linhua
    NANOSCALE, 2019, 11 (18) : 8699 - 8705
  • [6] Molecular movement and chiral arrangement in the solid state
    Toda, F
    PURE AND APPLIED CHEMISTRY, 1996, 68 (02) : 285 - 290
  • [7] Novel calibration method for camera array in spherical arrangement
    An, Pei
    Liu, Qiong
    Abedi, Firas
    Yang, You
    SIGNAL PROCESSING-IMAGE COMMUNICATION, 2020, 80
  • [8] Depth from focus using a compact camera arrangement
    Viitanen, J
    Siirtola, H
    Stanek, Z
    INTELLIGENT ROBOTS AND COMPUTER VISION XV: ALGORITHMS, TECHNIQUES, ACTIVE VISION, AND MATERIALS HANDLING, 1996, 2904 : 178 - 182
  • [9] Holographic stereogram using camera array in dense arrangement
    Yamamoto, Kenji
    Oi, Ryutaro
    Senoh, Takanori
    Ichihashi, Yasuyuki
    Kurita, Taiichiro
    PRACTICAL HOLOGRAPHY XXV: MATERIALS AND APPLICATIONS, 2011, 7957
  • [10] POSITRON CAMERA WITH SYMMETRICAL DETECTOR ARRANGEMENT AND ON LINE DATA REGISTRATION
    KRAUSS, O
    SCHMIDLIN, P
    OSTERTAG, H
    AMMANN, W
    LORENZ, WJ
    NUCLEAR-MEDIZIN, 1971, 10 (04): : 378 - +