Conservative chaos in a simple oscillatory system with non-smooth nonlinearity

被引:0
|
作者
Peter A. Meleshenko
Mikhail E. Semenov
Alexander F. Klinskikh
机构
[1] Voronezh State University,Digital Technologies Department
[2] Geophysical Survey of Russia Academy of Science,Applied Mathematics and Mechanics Department
[3] Voronezh State Technical University,Meteorology Department
[4] Zhukovsky–Gagarin Air Force Academy,undefined
[5] Target Search Lab of Groundbreaking Radio Communication Technologies of Advanced Research Foundation,undefined
来源
Nonlinear Dynamics | 2020年 / 101卷
关键词
Non-smooth potential; Chaos; Poincaré section; Bifurcation diagram; Lyapunov characteristic exponents;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we consider some unusual features of dynamical regimes in the non-smooth potential V(x)=|x|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V(x)=|x|$$\end{document} which is a piece-wise linear function. Also, we consider the dynamics in more complicated potential V(x)=|x|-a\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V(x)=\left| |x|-a\right| $$\end{document} which is quite similar to the well-known double-well potential within the Duffing model. Numerical results for Poincaré sections, bifurcation diagrams, and Lyapunov spectra together with dependencies of the largest Lyapunov characteristic exponent on the parameters of the excitation force are also obtained and analyzed. A comparison of the proposed systems and the Duffing model with the same fixed points is also done. Our numerical results show that such a relatively simple oscillatory system has rich nonlinear dynamics and exhibits a conservative character of chaos. This makes it possible to consider these systems as promising sources of chaotic signals in the field of modern chaos-based information technologies and digital communications.
引用
收藏
页码:2523 / 2540
页数:17
相关论文
共 50 条
  • [11] Melnikov method and detection of chaos for non-smooth systems
    Lin-song Shi
    Yong-kui Zou
    Tassilo Küpper
    Acta Mathematicae Applicatae Sinica, English Series, 2013, 29 : 881 - 896
  • [12] Simulation of a Non-smooth Continuous System
    Clauberg, Jan
    Schneider, Markus
    Ulbrich, Heinz
    VIBRATION PROBLEMS ICOVP 2011, 2011, 139 : 281 - 287
  • [13] Asymptotic tracking of periodic trajectories for a simple mechanical system subject to non-smooth impacts
    Menini, L
    Tornambé, A
    PROCEEDINGS OF THE 39TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-5, 2000, : 5059 - 5064
  • [14] Suppressing homoclinic chaos for a weak periodically excited non-smooth oscillator
    Shuangbao Li
    Xixi Ma
    Xiaoli Bian
    Siu-Kai Lai
    Wei Zhang
    Nonlinear Dynamics, 2020, 99 : 1621 - 1642
  • [15] Suppressing homoclinic chaos for a weak periodically excited non-smooth oscillator
    Li, Shuangbao
    Ma, Xixi
    Bian, Xiaoli
    Lai, Siu-Kai
    Zhang, Wei
    NONLINEAR DYNAMICS, 2020, 99 (02) : 1621 - 1642
  • [16] Non-smooth bifurcation and chaos in a DC-DC buck converter
    School of Science, Beijing University of Aeronautics and Astronautics, Beijing 100083, China
    不详
    Chin. Phys. Lett., 2007, 4 (886-889):
  • [17] The Dynamics in a Simple Polynomial Oscillatory System Under Periodic Excitation: Conservative Chaos in a Single-Well Potential
    Peter A. Meleshenko
    Journal of Vibration Engineering & Technologies, 2022, 10 : 2203 - 2215
  • [18] The Dynamics in a Simple Polynomial Oscillatory System Under Periodic Excitation: Conservative Chaos in a Single-Well Potential
    Meleshenko, Peter A.
    JOURNAL OF VIBRATION ENGINEERING & TECHNOLOGIES, 2022, 10 (06) : 2203 - 2215
  • [19] NEW APPLICATIONS OF NON-SMOOTH ANALYSIS TO NON-SMOOTH OPTIMIZATION
    JOFFE, AD
    LECTURE NOTES IN MATHEMATICS, 1983, 979 : 178 - 201
  • [20] Numerical and experimental investigations of the nonlinear dynamics and chaos in non-smooth systems
    Savi, Marcelo Amorim
    Divenyi, Sandor
    Penna Franca, Luiz Fernando
    Weber, Hans Ingo
    JOURNAL OF SOUND AND VIBRATION, 2007, 301 (1-2) : 59 - 73