Conservative chaos in a simple oscillatory system with non-smooth nonlinearity

被引:0
|
作者
Peter A. Meleshenko
Mikhail E. Semenov
Alexander F. Klinskikh
机构
[1] Voronezh State University,Digital Technologies Department
[2] Geophysical Survey of Russia Academy of Science,Applied Mathematics and Mechanics Department
[3] Voronezh State Technical University,Meteorology Department
[4] Zhukovsky–Gagarin Air Force Academy,undefined
[5] Target Search Lab of Groundbreaking Radio Communication Technologies of Advanced Research Foundation,undefined
来源
Nonlinear Dynamics | 2020年 / 101卷
关键词
Non-smooth potential; Chaos; Poincaré section; Bifurcation diagram; Lyapunov characteristic exponents;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we consider some unusual features of dynamical regimes in the non-smooth potential V(x)=|x|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V(x)=|x|$$\end{document} which is a piece-wise linear function. Also, we consider the dynamics in more complicated potential V(x)=|x|-a\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V(x)=\left| |x|-a\right| $$\end{document} which is quite similar to the well-known double-well potential within the Duffing model. Numerical results for Poincaré sections, bifurcation diagrams, and Lyapunov spectra together with dependencies of the largest Lyapunov characteristic exponent on the parameters of the excitation force are also obtained and analyzed. A comparison of the proposed systems and the Duffing model with the same fixed points is also done. Our numerical results show that such a relatively simple oscillatory system has rich nonlinear dynamics and exhibits a conservative character of chaos. This makes it possible to consider these systems as promising sources of chaotic signals in the field of modern chaos-based information technologies and digital communications.
引用
收藏
页码:2523 / 2540
页数:17
相关论文
共 50 条
  • [1] Conservative chaos in a simple oscillatory system with non-smooth nonlinearity
    Meleshenko, Peter A.
    Semenov, Mikhail E.
    Klinskikh, Alexander F.
    NONLINEAR DYNAMICS, 2020, 101 (04) : 2523 - 2540
  • [2] Nonlinear Control of an Aeroelastic System with a Non-smooth Structural Nonlinearity
    Jiffri, Shakir
    Mottershead, John E.
    VIBRATION ENGINEERING AND TECHNOLOGY OF MACHINERY, 2015, 23 : 317 - 328
  • [3] Experimental feedback linearisation of a vibrating system with a non-smooth nonlinearity
    Lisitano, D.
    Jiffri, S.
    Bonisoli, E.
    Mottershead, J. E.
    JOURNAL OF SOUND AND VIBRATION, 2018, 416 : 192 - 212
  • [4] Delayed feedback control of chaos in a single dof non-smooth system
    Zhang, Qing-Shuang
    Ding, Wang-Cai
    Sun, Chuang
    Zhendong yu Chongji/Journal of Vibration and Shock, 2008, 27 (01): : 155 - 158
  • [5] ROUTE TO CHAOS IN A NONLINEAR CONSERVATIVE OSCILLATORY SYSTEM
    GELL, Y
    NAKACH, R
    PHYSICAL REVIEW A, 1986, 34 (05): : 4276 - 4285
  • [6] Thin domains with non-smooth periodic oscillatory boundaries
    Arrieta, Jose M.
    Villanueva-Pesqueira, Manuel
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 446 (01) : 130 - 164
  • [7] Melnikov Method and Detection of Chaos for Non-smooth Systems
    Lin-song SHI
    Yong-kui ZOU
    Tassilo Küpper
    Acta Mathematicae Applicatae Sinica, 2013, (04) : 881 - 896
  • [8] Periodic solutions of conservative non-smooth dynamical systems
    Kunze, M
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1999, 79 : S97 - S100
  • [9] Melnikov Method and Detection of Chaos for Non-smooth Systems
    Shi, Lin-song
    Zou, Yong-kui
    Kuepper, Tassilo
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2013, 29 (04): : 881 - 896
  • [10] Melnikov Method and Detection of Chaos for Non-smooth Systems
    Linsong SHI
    Yongkui ZOU
    Tassilo Kpper
    Acta Mathematicae Applicatae Sinica(English Series), 2013, 29 (04) : 881 - 896