The finite basis problem for endomorphism semirings of finite semilattices with zero

被引:0
|
作者
Igor Dolinka
机构
[1] University of Novi Sad,Department of Mathematics and Informatics
来源
Algebra universalis | 2009年 / 61卷
关键词
Primary: 16Y60; Secondary:08B05; semiring; endomorphism semiring of a semilattice; finite basis problem; INFB;
D O I
暂无
中图分类号
学科分类号
摘要
If \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\fancyscript{I}}$$\end{document} is a join-semilattice with a distinguished least element, then all its endomorphisms form an additively idempotent semiring End(\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\fancyscript{I}}$$\end{document}); conversely, it is known that any additively idempotent semiring embeds into an endomorphism semiring of such kind. If \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${|\fancyscript{I}| \leq 2}$$\end{document}, then End(\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\fancyscript{I}}$$\end{document}) is readily seen to be finitely based. On the other hand, if \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\fancyscript{I}}}$$\end{document} is finite and either contains the square of a two-element chain or is a chain with at least four elements, then End(\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\fancyscript{I}}$$\end{document}) is shown to be inherently nonfinitely based. This leaves only the case when \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\fancyscript{I}}}$$\end{document} is a three-element chain as an open problem.
引用
收藏
相关论文
共 50 条
  • [21] On centralizers of finite lattices and semilattices
    Tóth, Endre
    Waldhauser, Tamás
    [J]. Journal of Multiple-Valued Logic and Soft Computing, 2021, 36 (04): : 405 - 436
  • [22] Tractable constraints in finite semilattices
    Rehof, Jakob
    Mogensen, Torben A.
    [J]. Science of Computer Programming, 1999, 35 (02): : 191 - 221
  • [23] ON THE FINITE TRANSMISSION ZERO ASSIGNMENT PROBLEM
    SYRMOS, VL
    [J]. AUTOMATICA, 1993, 29 (04) : 1121 - 1126
  • [24] EMBEDDING IN GLOBALS OF FINITE SEMILATTICES
    GOULD, M
    ISKRA, JA
    PALFY, PP
    [J]. CZECHOSLOVAK MATHEMATICAL JOURNAL, 1986, 36 (01) : 87 - 92
  • [25] Circuit Evaluation for Finite Semirings
    Ganardi, Moses
    Hucke, Danny
    Koenig, Daniel
    Lohrey, Markus
    [J]. 34TH SYMPOSIUM ON THEORETICAL ASPECTS OF COMPUTER SCIENCE (STACS 2017), 2017, 66
  • [26] THE FINITE BASIS PROBLEM FOR KISELMAN MONOIDS
    Ashikhmin, D. N.
    Volkov, M. V.
    Zhang, Wen Ting
    [J]. DEMONSTRATIO MATHEMATICA, 2015, 48 (04) : 475 - 492
  • [27] The finite basis problem for Kauffman monoids
    Auinger, K.
    Chen, Yuzhu
    Hu, Xun
    Luo, Yanfeng
    Volkov, M. V.
    [J]. ALGEBRA UNIVERSALIS, 2015, 74 (3-4) : 333 - 350
  • [28] The finite basis problem for pseudovariety O
    Repnitskii, VB
    Volkov, MV
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1998, 128 : 661 - 669
  • [29] Syntactic semigroups and the finite basis problem
    Jackson, M
    [J]. Structural Theory of Automata, Semigroups, and Universal ALgebra, 2005, 207 : 159 - 167
  • [30] The finite basis problem for Kauffman monoids
    K. Auinger
    Yuzhu Chen
    Xun Hu
    Yanfeng Luo
    M. V. Volkov
    [J]. Algebra universalis, 2015, 74 : 333 - 350