Mixed-State Auto-Models and Motion Texture Modeling

被引:0
|
作者
P. Bouthemy
C. Hardouin
G. Piriou
J. Yao
机构
[1] IRISA/INRIA,
[2] SAMOS/Université de Paris 1,undefined
[3] IRMAR/Université de Rennes 1,undefined
关键词
mixed states; auto-models; Gaussian models; dynamic textures; motion analysis;
D O I
暂无
中图分类号
学科分类号
摘要
In image motion analysis as well as for several application fields like daily pluviometry data modeling, observations contain two components of different nature. A first part is made with discrete values accounting for some symbolic information and a second part records a continuous (real-valued) measurement. We call such type of observations “mixed-state observations”. In this work we introduce a generalization of Besag's auto-models to deal with mixed-state observations at each site of a lattice. A careful construction as well as important properties of the model will be given. A special class of positive Gaussian mixed-state auto-models is proposed for the analysis of motion textures from video sequences. This model is first explored via simulations. We then apply it to real images of dynamic natural scenes.
引用
收藏
页码:387 / 402
页数:15
相关论文
共 50 条
  • [1] Mixed-state auto-models and motion texture modeling
    Bouthemy, P.
    Hardouin, C.
    Piriou, G.
    Yao, J.
    [J]. JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2006, 25 (03) : 387 - 402
  • [2] Mixed-state spatio-temporal auto-models
    Hardouin, C.
    Crivelli, T.
    [J]. STATISTICS, 2011, 45 (01) : 87 - 100
  • [3] Mixed-state causal modeling for statistical KL-based motion texture tracking
    Crivelli, Tomas
    Cernuschi-Frias, Bruno
    Bouthemy, Patrick
    Yao, Jian-Feng
    [J]. PATTERN RECOGNITION LETTERS, 2010, 31 (14) : 2286 - 2294
  • [4] Motion Textures: Modeling, Classification, and Segmentation Using Mixed-State Markov Random Fields
    Crivelli, Tomas
    Cernuschi-Frias, Bruno
    Bouthemy, Patrick
    Yao, Jian-Feng
    [J]. SIAM JOURNAL ON IMAGING SCIENCES, 2013, 6 (04): : 2484 - 2520
  • [5] Motion textures:: Mixed-state Markov fields and segmentation
    Crivelli, Tomas
    Cernuschi Frias, Bruno
    Bouthemy, Patrick
    [J]. REVISTA IBEROAMERICANA DE AUTOMATICA E INFORMATICA INDUSTRIAL, 2007, 4 (04): : 80 - +
  • [6] Mixed-State Models for Nonstationary Multiobject Activities
    Naresh P Cuntoor
    Rama Chellappa
    [J]. EURASIP Journal on Advances in Signal Processing, 2007
  • [7] Mixed-state models for nonstationary multiobject activities
    Cuntoor, Naresh P.
    Chellappa, Rama
    [J]. EURASIP JOURNAL ON ADVANCES IN SIGNAL PROCESSING, 2007, 2007 (1)
  • [8] Variational learning in mixed-state dynamic graphical models
    Pavlovic, V
    Frey, BJ
    Huang, TS
    [J]. UNCERTAINTY IN ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 1999, : 522 - 530
  • [9] ANTIVORTEX MOTION IN THE MIXED-STATE OF 2-D SUPERCONDUCTORS
    VIRET, M
    [J]. PHYSICA C, 1994, 235 : 1417 - 1418
  • [10] MIXED-STATE IN A SUPERLATTICE
    YUAN, BJ
    [J]. ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1995, 98 (04): : 457 - 472