Mixed-state causal modeling for statistical KL-based motion texture tracking

被引:2
|
作者
Crivelli, Tomas [1 ]
Cernuschi-Frias, Bruno [1 ,2 ]
Bouthemy, Patrick [3 ]
Yao, Jian-Feng [4 ]
机构
[1] Univ Buenos Aires, LIPSIRN, RA-1063 Bs As, Argentina
[2] Consejo Nacl Invest Cient & Tecn, RA-1033 Buenos Aires, DF, Argentina
[3] INRIA Rennes, F-35042 Rennes, France
[4] Univ Rennes 1, IRMAR, F-35042 Rennes, France
关键词
Mixed-state Markov models; Motion textures; Visual tracking; Kullback-Leibler divergence; SEARCH ALGORITHM;
D O I
10.1016/j.patrec.2010.06.016
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We are interested in the modeling and tracking of dynamic or motion textures, which refer to dynamic contents that can be classified as a texture with motion (fire, smoke, crowd of people). Experimentally we observe that they depict motion maps with values of a mixed type: a discrete value at zero (absence of motion) and continuous non-null motion values. We thus introduce a temporal mixed-state Markov model for the characterization of motion textures from which a set of 13 parameters is extracted as the descriptive feature of the dynamic content. Then, a motion texture tracking strategy is proposed using the conditional Kullback Leibler (KL) divergence between mixed-state probability densities, which allows us to estimate the position using a statistical matching approach. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:2286 / 2294
页数:9
相关论文
共 50 条
  • [1] Mixed-State Auto-Models and Motion Texture Modeling
    P. Bouthemy
    C. Hardouin
    G. Piriou
    J. Yao
    [J]. Journal of Mathematical Imaging and Vision, 2006, 25 : 387 - 402
  • [2] Mixed-state auto-models and motion texture modeling
    Bouthemy, P.
    Hardouin, C.
    Piriou, G.
    Yao, J.
    [J]. JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2006, 25 (03) : 387 - 402
  • [3] Motion Textures: Modeling, Classification, and Segmentation Using Mixed-State Markov Random Fields
    Crivelli, Tomas
    Cernuschi-Frias, Bruno
    Bouthemy, Patrick
    Yao, Jian-Feng
    [J]. SIAM JOURNAL ON IMAGING SCIENCES, 2013, 6 (04): : 2484 - 2520
  • [4] Motion textures:: Mixed-state Markov fields and segmentation
    Crivelli, Tomas
    Cernuschi Frias, Bruno
    Bouthemy, Patrick
    [J]. REVISTA IBEROAMERICANA DE AUTOMATICA E INFORMATICA INDUSTRIAL, 2007, 4 (04): : 80 - +
  • [5] ANTIVORTEX MOTION IN THE MIXED-STATE OF 2-D SUPERCONDUCTORS
    VIRET, M
    [J]. PHYSICA C, 1994, 235 : 1417 - 1418
  • [6] Mixed-state particle filters for multiaspect target tracking in image sequences
    Bruno, MGS
    [J]. 2003 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOL V, PROCEEDINGS: SENSOR ARRAY & MULTICHANNEL SIGNAL PROCESSING AUDIO AND ELECTROACOUSTICS MULTIMEDIA SIGNAL PROCESSING, 2003, : 165 - 168
  • [7] Segmentation of motion textures using mixed-state Markov random fields
    Crivelli, T.
    Cernuschi-Frias, B.
    Bouthemy, P.
    Yao, J. F.
    [J]. MATHEMATICS OF DATA IMAGE PATTERN RECOGNITION, COMPRESSION, AND ENCRYPTION WITH APPLICATIONS IX, 2006, 6315
  • [8] MODELING OF THERMOMAGNETOELECTRIC EFFECTS IN TYPE-II SUPERCONDUCTORS IN THE MIXED-STATE
    ZHOU, SA
    [J]. PHYSICA C, 1994, 228 (1-2): : 122 - 128
  • [9] A Mixed-State Streaming Edge Partitioning based on Combinatorial Design
    Zhang, Zhenyu
    Qu, Wenwen
    Zhang, Weixi
    Shang, Junlin
    Wang, Xiaoling
    [J]. 23RD IEEE INTERNATIONAL CONFERENCE ON DATA MINING, ICDM 2023, 2023, : 868 - 877
  • [10] Simultaneous Motion Detection and Background Reconstruction with a Mixed-State Conditional Markov Random Field
    Crivelli, Tomas
    Piriou, Gwenaelle
    Bouthemy, Patrick
    Cernuschi-Frias, Bruno
    Yao, Jian-Feng
    [J]. COMPUTER VISION - ECCV 2008, PT I, PROCEEDINGS, 2008, 5302 : 113 - +