The role of channel height and actuation method on particle manipulation in surface acoustic wave (SAW)-driven microfluidic devices

被引:0
|
作者
Citsabehsan Devendran
David J. Collins
Adrian Neild
机构
[1] Monash University,Department Mechanical and Aerospace Engineering
[2] University of Melbourne,Biomedical Engineering Department
来源
关键词
Microfluidics; Acoustofluidics; Surface acoustic waves; Particle manipulation;
D O I
暂无
中图分类号
学科分类号
摘要
Surface acoustic wave (SAW) micromanipulation offers modularity, easy integration into microfluidic devices and a high degree of flexibility. A major challenge for acoustic manipulation, however, is the existence of a lower limit on the minimum particle size that can be manipulated. As particle size reduces, the drag force resulting from acoustic streaming dominates over acoustic radiation forces; reducing this threshold is key to manipulating smaller specimens. To address this, we investigate a novel excitation configuration based on diffractive-acoustic SAW (DASAW) actuation and demonstrate a reduction in the critical minimum particle size which can be manipulated. DASAW exploits the inherent diffractive effects arising from a limited transducer area in a microchannel, requiring only a travelling SAW (TSAW) to generate time-averaged pressure gradients. We show that these acoustic fields focus particles at the channel walls, and further compare this excitation mode with more typical standing SAW (SSAW) actuation. Compared to SSAW, DASAW reduces acoustic streaming effects whilst generating a comparable pressure field. The result of these factors is a critical particle size with DASAW (1 μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\upmu$$\end{document}m) that is significantly smaller than that for SSAW actuation (1.85 μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\upmu$$\end{document}m), for polystyrene particles and a given λSAW\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda _{\text {SAW}}$$\end{document} = 200 μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\upmu$$\end{document}m. We further find that streaming magnitude can be tuned in a DASAW system by changing the channel height, noting optimum channel heights for particle collection as a function of the fluid wavelength at which streaming velocities are minimised in both DASAW and SSAW devices.
引用
收藏
相关论文
共 50 条
  • [1] The role of channel height and actuation method on particle manipulation in surface acoustic wave (SAW)-driven microfluidic devices
    Devendran, Citsabehsan
    Collins, David J.
    Neild, Adrian
    [J]. MICROFLUIDICS AND NANOFLUIDICS, 2022, 26 (02)
  • [2] Sensitivity of acoustofluidic particle manipulation to microchannel height in standing surface acoustic wave-based microfluidic devices
    Li, Yiming
    Liang, Dongfang
    Kabla, Alexandre
    Zhang, Yuning
    Yang, Xin
    [J]. PHYSICS OF FLUIDS, 2023, 35 (12)
  • [3] Surface acoustic wave-induced precise particle manipulation in a trapezoidal glass microfluidic channel
    Johansson, L.
    Enlund, J.
    Johansson, S.
    Katardjiev, I.
    Wiklund, M.
    Yantchev, V.
    [J]. JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2012, 22 (02)
  • [4] Particle manipulation in a microfluidic channel using acoustic trap
    Jeong, Jong Seob
    Lee, Jung Woo
    Lee, Chang Yang
    Teh, Shia Yen
    Lee, Abraham
    Shung, K. Kirk
    [J]. BIOMEDICAL MICRODEVICES, 2011, 13 (04) : 779 - 788
  • [5] Particle manipulation in a microfluidic channel using acoustic trap
    Jong Seob Jeong
    Jung Woo Lee
    Chang Yang Lee
    Shia Yen Teh
    Abraham Lee
    K. Kirk Shung
    [J]. Biomedical Microdevices, 2011, 13 : 779 - 788
  • [6] FAST INERTIAL MICROFLUIDIC ACTUATION AND MANIPULATION USING SURFACE ACOUSTIC WAVES
    Yeo, Leslie Y.
    Friend, James R.
    [J]. PROCEEDINGS OF THE 8TH INTERNATIONAL CONFERENCE ON NANOCHANNELS, MICROCHANNELS AND MINICHANNELS, 2010, PTS A AND B, 2011, : 605 - 612
  • [7] Acoustofluidics 17: Theory and applications of surface acoustic wave devices for particle manipulation
    Gedge, Michael
    Hill, Martyn
    [J]. LAB ON A CHIP, 2012, 12 (17) : 2998 - 3007
  • [8] Surface-Acoustic-Wave (SAW)-Driven Device for Three-Dimensional Cell Manipulation
    Wang, Zenan
    Tao, Jie
    Tian, Jun
    Wei, Jun
    Hu, Ying
    [J]. IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2023, 70 (03) : 780 - 788
  • [9] Blood platelet enrichment in mass-producible surface acoustic wave (SAW) driven microfluidic chips
    Richard, Cynthia
    Fakhfouri, Armaghan
    Colditz, Melanie
    Striggow, Friedrich
    Kronstein-Wiedemann, Romy
    Tonn, Torsten
    Medina-Sanchez, Mariana
    Schmidt, Oliver G.
    Gemming, Thomas
    Winkler, Andreas
    [J]. LAB ON A CHIP, 2019, 19 (24) : 4043 - 4051
  • [10] The Gate Hysteresis in Single Electron Transport Driven by Surface Acoustic Wave (SAW/SET) Devices
    Song, Li
    Chen, Shuwei
    [J]. JOURNAL OF LOW TEMPERATURE PHYSICS, 2017, 189 (3-4) : 185 - 195