The Existence of Ground State Solutions for a Schrödinger–Bopp–Podolsky System with Convolution Nonlinearity

被引:0
|
作者
Yao Xiao
Sitong Chen
Muhua Shu
机构
[1] Central South University,School of Mathematics and Statistics, HNP
来源
关键词
Schrödinger–Bopp–Podolsky system; Ground state solution; Nehari–Pohoz̆aev manifold; Concentration-compactness; 35J20; 35Q55;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we consider the following Schrödinger–Bopp–Podolsky system with convolution nonlinearity: -Δu+Vxu+ϕu=Iα∗Fufu,inR3,-Δϕ+a2Δ2ϕ=4πu2,inR3,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} {\left\{ \begin{array}{ll} -\Delta u+V\left( x \right) u+\phi u=\left( I_{\alpha }*F\left( u \right) \right) f\left( u \right) , \;\;&{} \text{ in } \ \ {\mathbb {R}}^3,\\ -\Delta \phi +a^{2}\Delta ^{2} \phi =4\pi u^{2}, \;\;&{} \text{ in } \ \ {\mathbb {R}}^3, \end{array}\right. } \end{aligned}$$\end{document}where α∈0,2,Iα:R3→R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha \in \left( 0,2\right) , I_\alpha :{\mathbb {R}}^{3} \overset{}{\rightarrow } {\mathbb {R}}$$\end{document} is the Riesz potential, V∈C(R3,[0,∞)),V∞=limx→∞V(x)>0,f∈C(R,R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V\in {\mathcal {C}}({\mathbb {R}}^{3}, [0,\infty )), V_{\infty }=\lim _{\left| x \right| \rightarrow \infty }V(x) >0, f\in {\mathcal {C}}({\mathbb {R}}, {\mathbb {R}})$$\end{document} and F(t)=∫0tfsds\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F(t)=\int _{0}^{t} f\left( s \right) \textrm{d}s$$\end{document} satisfying limt→∞Fttσ=∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lim _{\left| t \right| \rightarrow \infty } \frac{F\left( t \right) }{\left| t \right| ^{\sigma } }=\infty $$\end{document}, where σ=α+64\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma =\frac{\alpha +6}{4}$$\end{document}. Through careful analysis of the nonlinear terms, we prove that the existence of ground state solutions and positive minimal energy solutions for the above system.
引用
收藏
相关论文
共 50 条
  • [31] Ground state solutions of the non-autonomous Schrodinger-Bopp-Podolsky system
    Chen, Sitong
    Li, Lin
    Radulescu, Vicentiu D.
    Tang, Xianhua
    ANALYSIS AND MATHEMATICAL PHYSICS, 2022, 12 (01)
  • [32] Existence and Concentration of Semi-classical Ground State Solutions for Chern–Simons–Schrödinger System
    Lin-Jing Wang
    Gui-Dong Li
    Chun-Lei Tang
    Qualitative Theory of Dynamical Systems, 2021, 20
  • [33] Positive Ground State Solutions for Schr o?dinger-Poisson System with General Nonlinearity and Critical Exponent
    Qingfang, Chen
    Jiafeng, Liao
    JOURNAL OF PARTIAL DIFFERENTIAL EQUATIONS, 2023, 36 (01): : 68 - 81
  • [34] Positive ground state solutions for the Chern–Simons–Schrödinger system
    Liping Xu
    Haibo Chen
    Analysis and Mathematical Physics, 2022, 12
  • [35] The existence of ground state normalized solutions for Chern-Simons-Schrödinger systems
    Mao, Yu
    Wu, Xingping
    Tang, Chunlei
    ACTA MATHEMATICA SCIENTIA, 2023, 43 (06) : 2649 - 2661
  • [36] Existence of ground state solutions of Nehari-Pankov type to Schr?dinger systems
    Xianhua Tang
    Xiaoyan Lin
    Science China(Mathematics), 2020, 63 (01) : 113 - 134
  • [37] The existence of ground state normalized solutions for Chern-Simons-Schrödinger systems
    Yu Mao
    Xingping Wu
    Chunlei Tang
    Acta Mathematica Scientia, 2023, 43 : 2649 - 2661
  • [38] Existence of ground state solutions of Nehari-Pankov type to Schrödinger systems
    Xianhua Tang
    Xiaoyan Lin
    Science China Mathematics, 2020, 63 : 113 - 134
  • [39] THE EXISTENCE OF GROUND STATE NORMALIZED SOLUTIONS FOR CHERN-SIMONS-SCHR?DINGER SYSTEMS
    毛宇
    吴行平
    唐春雷
    Acta Mathematica Scientia, 2023, 43 (06) : 2649 - 2661
  • [40] Existence of ground state solutions to some Nonlinear Schrödinger equations on lattice graphs
    Bobo Hua
    Wendi Xu
    Calculus of Variations and Partial Differential Equations, 2023, 62