Machine learning evaluation of LV outflow obstruction in hypertrophic cardiomyopathy using three-chamber cardiovascular magnetic resonance

被引:0
|
作者
Manisha Sahota
Sepas Ryan Saraskani
Hao Xu
Liandong Li
Abdul Wahab Majeed
Uxio Hermida
Stefan Neubauer
Milind Desai
William Weintraub
Patrice Desvigne-Nickens
Jeanette Schulz-Menger
Raymond Y. Kwong
Christopher M. Kramer
Alistair A. Young
Pablo Lamata
机构
[1] King’s College London,Department of Biomedical Engineering
[2] University of Oxford,Division of Cardiovascular Medicine, Radcliffe Department of Medicine
[3] Cardiovascular Institute,ECRC and Department of Cardiology, HELIOS Klinik Berlin
[4] Cleveland Clinic,Buch, Clinic for Cardiology and Nephrology
[5] MedStar Heart and Vascular Institute,Cardiovascular Division, Department of Medicine and Department of Radiology
[6] National Heart,Cardiovascular Division
[7] Lung,undefined
[8] and Blood Institute,undefined
[9] DZHK Partnersite Berlin,undefined
[10] Charité Medical University Berlin,undefined
[11] Brigham and Women’s Hospital,undefined
[12] University of Virginia Health,undefined
关键词
Hypertrophic cardiomyopathy; Atlas shape analysis; LV outflow tract obstruction;
D O I
暂无
中图分类号
学科分类号
摘要
Left ventricular outflow tract obstruction (LVOTO) is common in hypertrophic cardiomyopathy (HCM), but relationships between anatomical metrics and obstruction are poorly understood. We aimed to develop machine learning methods to evaluate LVOTO in HCM patients and quantify relationships between anatomical metrics and obstruction. This retrospective analysis of 1905 participants of the HCM Registry quantified 11 anatomical metrics derived from 14 landmarks automatically detected on the three-chamber long axis cine CMR images. Linear and logistic regression was used to quantify strengths of relationships with the presence of LVOTO (defined by resting Doppler pressure drop of > 30 mmHg), using the area under the receiver operating characteristic (AUC). Intraclass correlation coefficients between the network predictions and three independent observers showed similar agreement to that between observers. The distance from anterior mitral valve leaflet tip to basal septum (AML-BS) was most highly correlated with Doppler pressure drop (R2 = 0.19, p < 10–5). Multivariate stepwise regression found the best predictive model included AML-BS, AML length to aortic valve diameter ratio, AML length to LV width ratio, and midventricular septal thickness metrics (AUC 0.84). Excluding AML-BS, metrics grouped according to septal hypertrophy, LV geometry, and AML anatomy each had similar associations with LVOTO (AUC 0.71, 0.71, 0.68 respectively, p = ns), significantly less than their combination (AUC 0.77, p < 0.05 for each). Anatomical metrics derived from a standard three-chamber CMR cine acquisition can be used to highlight risk of LVOTO, and suggest further investigation if necessary. A combination of geometric factors is required to provide the best risk prediction.
引用
收藏
页码:2695 / 2705
页数:10
相关论文
共 50 条
  • [21] Defining genotype-phenotype relationships in patients with hypertrophic cardiomyopathy using cardiovascular magnetic resonance imaging
    Miller, Robert J. H.
    Heidary, Shahriar
    Pavlovic, Aleksandra
    Schlachter, Audrey
    Dash, Rajesh
    Fleischmann, Dominik
    Ashley, Euan A.
    Wheeler, Matthew T.
    Yang, Phillip C.
    PLOS ONE, 2019, 14 (06):
  • [22] Relation between left ventricular outflow tract obstruction and left ventricular shape in patients with hypertrophic cardiomyopathy: A cardiac magnetic resonance imaging study
    Martin, Romain
    Lairez, Olivier
    Boudou, Nicolas
    Mejean, Simon
    Lhermusier, Thibault
    Dumonteil, Nicolas
    Berry, Matthieu
    Cognet, Thomas
    Massabuau, Pierre
    Elbaz, Meyer
    Rousseau, Herve
    Galinier, Michel
    Carrie, Didier
    ARCHIVES OF CARDIOVASCULAR DISEASES, 2013, 106 (8-9) : 440 - 447
  • [23] Evaluation of Apical Subtype of Hypertrophic Cardiomyopathy Using Cardiac Magnetic Resonance Imaging With Gadolinium Enhancement
    Kebed, Kalie Y.
    Al Adham, Raed I.
    Bishu, Kalkidan
    Askew, J. Wells
    Klarich, Kyle W.
    Araoz, Philip A.
    Foley, Thomas A.
    Glockner, James F.
    Nishimura, Rick A.
    Anavekar, Nandan S.
    AMERICAN JOURNAL OF CARDIOLOGY, 2014, 114 (05): : 777 - 782
  • [24] PREDICTION OF LATE GADOLINIUM ENHANCEMENT ON CARDIAC MAGNETIC RESONANCE USING MACHINE LEARNING IN A TRANS-PACIFIC MULTICENTER REGISTRY OF HYPERTROPHIC CARDIOMYOPATHY
    Akita, Keitaro
    Maekawa, Yuichiro
    Hasegawa, Kohei
    Weiner, Shepard D.
    Maurer, Mathew S.
    Tower-Rader, Albree
    Fifer, Michael A.
    Reilly, Muredach P.
    Shimada, Yuichi J.
    JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2024, 83 (13) : 407 - 407
  • [25] A Deep Learning Approach to Classify Fabry Cardiomyopathy from Hypertrophic Cardiomyopathy Using Cine Imaging on Cardiac Magnetic Resonance
    Chen, Wei-Wen
    Kuo, Ling
    Lin, Yi-Xun
    Yu, Wen-Chung
    Tseng, Chien-Chao
    Lin, Yenn-Jiang
    Huang, Ching-Chun
    Chang, Shih-Lin
    Wu, Jacky Chung-Hao
    Chen, Chun-Ku
    Weng, Ching-Yao
    Chan, Siwa
    Lin, Wei-Wen
    Hsieh, Yu-Cheng
    Lin, Ming-Chih
    Fu, Yun-Ching
    Chen, Tsung
    Chen, Shih-Ann
    Lu, Henry Horng-Shing
    INTERNATIONAL JOURNAL OF BIOMEDICAL IMAGING, 2024, 2024
  • [26] Machine learning using cardiovascular magnetic resonance to predict cardiovascular events in patients with acute myocarditis
    Pfeffer, A.
    Pezel, T.
    Toupin, S.
    Garot, P.
    Hovasse, T.
    Sanguineti, F.
    Di Lena, C.
    Renard, C.
    Tribouilloy, C.
    Hamzi, K.
    Goncalves, T.
    Dillinger, J. G.
    Henry, P.
    Bohbot, Y.
    Garot, P.
    EUROPEAN HEART JOURNAL, 2023, 44
  • [27] Risk of stroke in patients with Chagas cardiomyopathy is associated with depressed LV function but not with LV myocardial fibrosis or apical aneurysm: a study using cardiovascular magnetic resonance
    Schmidt, A.
    Turin Moreira, H.
    Volpe, G. J.
    Braggion Santos, M. F.
    Marin Neto, J. A.
    EUROPEAN HEART JOURNAL, 2020, 41 : 2151 - 2151
  • [28] Precision measurement of cardiac structure and function in cardiovascular magnetic resonance using machine learning
    Rhodri H. Davies
    João B. Augusto
    Anish Bhuva
    Hui Xue
    Thomas A. Treibel
    Yang Ye
    Rebecca K. Hughes
    Wenjia Bai
    Clement Lau
    Hunain Shiwani
    Marianna Fontana
    Rebecca Kozor
    Anna Herrey
    Luis R. Lopes
    Viviana Maestrini
    Stefania Rosmini
    Steffen E. Petersen
    Peter Kellman
    Daniel Rueckert
    John P. Greenwood
    Gabriella Captur
    Charlotte Manisty
    Erik Schelbert
    James C. Moon
    Journal of Cardiovascular Magnetic Resonance, 24
  • [29] Precision measurement of cardiac structure and function in cardiovascular magnetic resonance using machine learning
    Davies, Rhodri H.
    Augusto, Joao B.
    Bhuva, Anish
    Xue, Hui
    Treibel, Thomas A.
    Ye, Yang
    Hughes, Rebecca K.
    Bai, Wenjia
    Lau, Clement
    Shiwani, Hunain
    Fontana, Marianna
    Kozor, Rebecca
    Herrey, Anna
    Lopes, Luis R.
    Maestrini, Viviana
    Rosmini, Stefania
    Petersen, Steffen E.
    Kellman, Peter
    Rueckert, Daniel
    Greenwood, John P.
    Captur, Gabriella
    Manisty, Charlotte
    Schelbert, Erik
    Moon, James C.
    JOURNAL OF CARDIOVASCULAR MAGNETIC RESONANCE, 2022, 24 (01)
  • [30] Noncompaction Cardiomyopathy in Children With Congenital Heart Disease: Evaluation Using Cardiovascular Magnetic Resonance Imaging
    Shobhit Madan
    Soma Mandal
    James E. Bost
    Michael D. Mishra
    Ariel L. Bailey
    Dennis Willaman
    Pallavi Jonnalagadda
    Kereeti V. Pisapati
    Sameh S. Tadros
    Pediatric Cardiology, 2012, 33 : 215 - 221