A note on orbit categories, classifying spaces, and generalized homotopy fixed points

被引:0
|
作者
Daniel A. Ramras
机构
[1] Indiana University-Purdue University Indianapolis,Department of Mathematical Sciences
关键词
Classifying space; Family of subgroups; Orbit category; Homotopy fixed points; Primary 55R35; Secondary 18F25;
D O I
暂无
中图分类号
学科分类号
摘要
We give a new description of Rosenthal’s generalized homotopy fixed point spaces as homotopy limits over the orbit category. This is achieved using a simple categorical model for classifying spaces with respect to families of subgroups.
引用
收藏
页码:237 / 249
页数:12
相关论文
共 50 条
  • [21] On homotopy groups of the suspended classifying spaces
    Mikhailov, Roman
    Wu, Jie
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2010, 10 (01): : 565 - 625
  • [22] Fixed points for mappings defined on generalized gauge spaces
    Choban, Mitrofan M.
    CARPATHIAN JOURNAL OF MATHEMATICS, 2015, 31 (03) : 313 - 324
  • [23] On fixed points of (η, θ)-quasicontraction mappings in generalized metric spaces
    Alsamir, Habes
    Noorani, Mohd Salmi M. D.
    Shatanawi, Wasfi
    JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2016, 9 (06): : 4651 - 4658
  • [24] Common Fixed Points in Generalized Metric Spaces with a Graph
    Chaira, Karim
    Kabil, Mustapha
    Kamouss, Abdessamad
    JOURNAL OF MATHEMATICS, 2019, 2019
  • [25] Fixed and periodic points of generalized contractions in metric spaces
    Mujahid Abbas
    Basit Ali
    Salvador Romaguera
    Fixed Point Theory and Applications, 2013
  • [26] Common fixed points for α-ψ-φ-contractions in generalized metric spaces
    La Rosa, Vincenzo
    Vetro, Pasquale
    NONLINEAR ANALYSIS-MODELLING AND CONTROL, 2014, 19 (01): : 43 - 54
  • [27] Fixed points for cyclic φ-contractions in generalized metric spaces
    He F.
    Chen A.
    Fixed Point Theory and Applications, 2016 (1)
  • [28] Fixed and periodic points of generalized contractions in metric spaces
    Abbas, Mujahid
    Ali, Basit
    Romaguera, Salvador
    FIXED POINT THEORY AND APPLICATIONS, 2013,
  • [29] Fixed Points For Cyclic μ-Expansions In Generalized Metric Spaces
    Dahiya, Anita
    Rani, Asha
    Kumar, Manoj
    RECENT ADVANCES IN FUNDAMENTAL AND APPLIED SCIENCES (RAFAS 2016), 2017, 1860
  • [30] Fixed Points and Completeness in Metric and Generalized Metric Spaces
    Cobzaş S.
    Journal of Mathematical Sciences, 2020, 250 (3) : 475 - 535