On perturbations of the fractional Yamabe problem

被引:0
|
作者
Woocheol Choi
Seunghyeok Kim
机构
[1] School of Mathematics,
[2] Korea Institute for Advanced Study,undefined
来源
Calculus of Variations and Partial Differential Equations | 2017年 / 56卷
关键词
Primary 35R11; Secondary 58J05; 35B33; 35B44;
D O I
暂无
中图分类号
学科分类号
摘要
The fractional Yamabe problem, proposed by González and Qing (Analysis PDE 6:1535–1576, 2013), is a geometric question which concerns the existence of metrics with constant fractional scalar curvature. It extends the phenomena which were discovered in the classical Yamabe problem and the boundary Yamabe problem to the realm of nonlocal conformally invariant operators. We investigate a non-compactness property of the fractional Yamabe problem by constructing bubbling solutions to its small perturbations.
引用
收藏
相关论文
共 50 条
  • [21] THE YAMABE PROBLEM
    LEE, JM
    PARKER, TH
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1987, 17 (01) : 37 - 91
  • [22] FRACTIONAL CONFORMAL LAPLACIANS AND FRACTIONAL YAMABE PROBLEMS
    del Mar Gonzalez, Maria
    Qing, Jie
    ANALYSIS & PDE, 2013, 6 (07): : 1535 - 1576
  • [23] A compactness theorem for the fractional Yamabe problem, Part I: The nonumbilic conformal infinity
    Kim, Seunghyeok
    Musso, Monica
    Wei, Juncheng
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2021, 23 (09) : 3017 - 3073
  • [24] Soliton to the fractional Yamabe flow
    Ho, Pak Tung
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2016, 139 : 211 - 217
  • [25] A NOTE ON THE YAMABE PROBLEM
    Wang Xujia
    JOURNAL OF PARTIAL DIFFERENTIAL EQUATIONS, 2005, 18 (04): : 322 - 326
  • [26] The Yamabe Problem with singularities
    Madani, Farid
    BULLETIN DES SCIENCES MATHEMATIQUES, 2008, 132 (07): : 575 - 591
  • [27] Hyperbolic Yamabe problem
    De-xing Kong
    Qi Liu
    Applied Mathematics-A Journal of Chinese Universities, 2017, 32 : 147 - 163
  • [28] MULTIPLICITY FOR THE YAMABE PROBLEM
    HEBEY, E
    VAUGON, M
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1991, 312 (02): : 237 - 240
  • [29] Hyperbolic Yamabe problem
    Kong De-xing
    Liu Qi
    APPLIED MATHEMATICS-A JOURNAL OF CHINESE UNIVERSITIES SERIES B, 2017, 32 (02) : 147 - 163
  • [30] NOTE ON THE YAMABE PROBLEM
    HEBEY, E
    VAUGON, M
    JOURNAL OF FUNCTIONAL ANALYSIS, 1991, 96 (01) : 31 - 37