Engineering and optimising deaminase fusions for genome editing

被引:0
|
作者
Luhan Yang
Adrian W. Briggs
Wei Leong Chew
Prashant Mali
Marc Guell
John Aach
Daniel Bryan Goodman
David Cox
Yinan Kan
Emal Lesha
Venkataramanan Soundararajan
Feng Zhang
George Church
机构
[1] Harvard Medical School,Department of Genetics
[2] Program in Biological and Biomedical Sciences,Department of Brain and Cognitive Sciences
[3] Harvard Medical School,undefined
[4] eGenesis Inc.,undefined
[5] Harvard-MIT Division of Health Science and Technology,undefined
[6] Broad Institute of MIT and Harvard,undefined
[7] McGovern Institute for Brain Research,undefined
[8] MIT,undefined
[9] MIT Cambridge,undefined
[10] Wyss Institute for Biologically Inspired Engineering,undefined
[11] Present address: eGenesis Inc.,undefined
[12] 1 Kendall Square,undefined
[13] Building 200,undefined
[14] Cambridge Biolabs,undefined
[15] Cambridge,undefined
[16] Massachusetts 02139,undefined
[17] USA,undefined
[18] Present address: Genome Institute of Singapore,undefined
[19] Agency for Science,undefined
[20] Technology and Research (A*STAR),undefined
[21] Singapore 138672,undefined
[22] Singapore,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Precise editing is essential for biomedical research and gene therapy. Yet, homology-directed genome modification is limited by the requirements for genomic lesions, homology donors and the endogenous DNA repair machinery. Here we engineered programmable cytidine deaminases and test if we could introduce site-specific cytidine to thymidine transitions in the absence of targeted genomic lesions. Our programmable deaminases effectively convert specific cytidines to thymidines with 13% efficiency in Escherichia coli and 2.5% in human cells. However, off-target deaminations were detected more than 150 bp away from the target site. Moreover, whole genome sequencing revealed that edited bacterial cells did not harbour chromosomal abnormalities but demonstrated elevated global cytidine deamination at deaminase intrinsic binding sites. Therefore programmable deaminases represent a promising genome editing tool in prokaryotes and eukaryotes. Future engineering is required to overcome the processivity and the intrinsic DNA binding affinity of deaminases for safer therapeutic applications.
引用
收藏
相关论文
共 50 条
  • [31] Precise genome engineering in Drosophila using prime editing
    Bosch, Justin A.
    Birchak, Gabriel
    Perrimon, Norbert
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2021, 118 (01)
  • [32] Multiplex genome editing using a dCas9-cytidine deaminase fusion in Streptomyces
    Yawei Zhao
    Jinzhong Tian
    Guosong Zheng
    Jun Chen
    Chuanwen Sun
    Zhongyi Yang
    Andrei A. Zimin
    Weihong Jiang
    Zixin Deng
    Zhijun Wang
    Yinhua Lu
    Science China Life Sciences, 2020, 63 : 1053 - 1062
  • [33] Multiplex genome editing using a dCas9-cytidine deaminase fusion in Streptomyces
    Yawei Zhao
    Jinzhong Tian
    Guosong Zheng
    Jun Chen
    Chuanwen Sun
    Zhongyi Yang
    andrei A.Zimin
    Weihong Jiang
    Zixin Deng
    Zhijun Wang
    Yinhua Lu
    Science China(Life Sciences), 2020, 63 (07) : 1053 - 1062
  • [34] Multiplex genome editing using a dCas9-cytidine deaminase fusion in Streptomyces
    Zhao, Yawei
    Tian, Jinzhong
    Zheng, Guosong
    Chen, Jun
    Sun, Chuanwen
    Yang, Zhongyi
    Zimin, Andrei A.
    Jiang, Weihong
    Deng, Zixin
    Wang, Zhijun
    Lu, Yinhua
    SCIENCE CHINA-LIFE SCIENCES, 2020, 63 (07) : 1053 - 1062
  • [35] Precision genome engineering in rice using prime editing system
    Hua, Kai
    Jiang, Yuwei
    Tao, Xiaoping
    Zhu, Jian-Kang
    PLANT BIOTECHNOLOGY JOURNAL, 2020, 18 (11) : 2167 - 2169
  • [36] Precision genome engineering through adenine and cytosine base editing
    Kim, Jin-Soo
    NATURE PLANTS, 2018, 4 (03) : 148 - 151
  • [37] Genome editing: the dynamics of continuity, convergence, and change in the engineering of life
    Martin, Paul
    Morrison, Michael
    Turkmendag, Ilke
    Nerlich, Brigitte
    McMahon, Aisling
    de Saille, Stevienna
    Bartlett, Andrew
    NEW GENETICS AND SOCIETY, 2020, 39 (02) : 219 - 242
  • [38] Precision genome engineering through adenine base editing in plants
    Kang, Beum-Chang
    Yun, Jae-Young
    Kim, Sang-Tae
    Shin, YouJin
    Ryu, Jahee
    Choi, Minkyung
    Woo, Je Wook
    Kim, Jin-Soo
    NATURE PLANTS, 2018, 4 (07) : 427 - 431
  • [39] Engineering self-deliverable ribonucleoproteins for genome editing in the brain
    Chen, Kai
    Stahl, Elizabeth C.
    Kang, Min Hyung
    Xu, Bryant
    Allen, Ryan
    Trinidad, Marena
    Doudna, Jennifer A.
    NATURE COMMUNICATIONS, 2024, 15 (01)
  • [40] CRISPR-derived genome editing technologies for metabolic engineering
    Nishida, Keiji
    Kondo, Akihiko
    Kondo, Akihiko (akondo@kobe-u.ac.jp), 1600, Academic Press Inc. (63): : 141 - 147