Global Weyl modules for the twisted loop algebra

被引:0
|
作者
Ghislain Fourier
Nathan Manning
Prasad Senesi
机构
[1] Universität zu Köln,Mathematisches Institut
[2] University of California,undefined
[3] The Catholic University of America,undefined
关键词
Loop algebra; Weyl module; Symmetric algebra; Lie algebra; Twisted Kac-Moody algebra; 17B10; 17B40;
D O I
暂无
中图分类号
学科分类号
摘要
We define global Weyl modules for twisted loop algebras and analyze their highest weight spaces, which are in fact isomorphic to Laurent polynomial rings in finitely many variables. We are able to show that the global Weyl module is a free module of finite rank over these rings. Furthermore we prove, that there exist injective maps from the global Weyl modules for twisted loop algebras into a direct sum of global Weyl modules for untwisted loop algebras. Relations between local Weyl modules for twisted and untwisted generalized current algebras are known; we provide for the first time a relation on global Weyl modules.
引用
收藏
页码:53 / 82
页数:29
相关论文
共 50 条