Robust quantum valley Hall effect for vortices in an interacting bosonic quantum fluid

被引:0
|
作者
O. Bleu
G. Malpuech
D. D. Solnyshkov
机构
[1] University Clermont Auvergne,Institut Pascal, PHOTON
[2] CNRS,N2
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Topologically protected pseudospin transport, analogous to the quantum spin Hall effect, cannot be strictly implemented for photons and in general bosons because of the lack of symmetry-protected pseudospins. Here we show that the required protection can be provided by the real-space topological excitation of an interacting quantum fluid: a quantum vortex. We consider a Bose-Einstein condensate at the Γ point of the Brillouin zone of a quantum valley Hall system based on two staggered honeycomb lattices. We demonstrate the existence of a coupling between the vortex winding and the valley of the bulk Bloch band. This leads to chiral vortex propagation on each side of the zigzag interface between two regions of inverted staggering. The topological protection provided by the vortex winding prevents valley pseudospin mixing and resonant backscattering, allowing a truly topologically protected valley pseudospin transport.
引用
收藏
相关论文
共 50 条
  • [1] Robust quantum valley Hall effect for vortices in an interacting bosonic quantum fluid
    Bleu, O.
    Malpuech, G.
    Solnyshkov, D. D.
    [J]. NATURE COMMUNICATIONS, 2018, 9
  • [2] Bosonic Integer Quantum Hall Effect in an Interacting Lattice Model
    He, Yin-Chen
    Bhattacharjee, Subhro
    Moessner, R.
    Pollmann, Frank
    [J]. PHYSICAL REVIEW LETTERS, 2015, 115 (11)
  • [3] A quantum Hall fluid of vortices
    Tong, D
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2004, (02):
  • [4] Interacting quantum topologies and the quantum Hall effect
    Balachandran, A. P.
    Gupta, Kumar S.
    Kuerkcueoglu, Seckin
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2008, 23 (09): : 1327 - 1336
  • [5] Bosonic integer quantum Hall effect as topological pumping
    Nakagawa, Masaya
    Furukawa, Shunsuke
    [J]. PHYSICAL REVIEW B, 2017, 95 (16)
  • [6] Chiral bosonic field theories and the quantum Hall effect
    Bracken, P
    [J]. CANADIAN JOURNAL OF PHYSICS, 2001, 79 (09) : 1121 - 1131
  • [7] Quantum anomalous valley Hall effect for bosons
    Kovalev, V. M.
    Savenko, I. G.
    [J]. PHYSICAL REVIEW B, 2019, 100 (12)
  • [8] Density matrix renormalization group for bosonic quantum Hall effect
    Kovrizhin, D. L.
    [J]. PHYSICAL REVIEW B, 2010, 81 (12):
  • [9] Partially split Hall bar: Tunneling in the bosonic integer quantum Hall effect
    Mulligan, Michael
    Fisher, Matthew P. A.
    [J]. PHYSICAL REVIEW B, 2014, 89 (20):
  • [10] Bosonic Integer Quantum Hall Effect in Optical Flux Lattices
    Sterdyniak, A.
    Cooper, Nigel R.
    Regnault, N.
    [J]. PHYSICAL REVIEW LETTERS, 2015, 115 (11)