Interacting quantum topologies and the quantum Hall effect

被引:6
|
作者
Balachandran, A. P. [1 ]
Gupta, Kumar S. [2 ]
Kuerkcueoglu, Seckin [3 ]
机构
[1] Syracuse Univ, Dept Phys, Syracuse, NY 13244 USA
[2] Saha Inst Nucl Phys, Div Theory, Kolkata 700064, W Bengal, India
[3] Leibniz Univ Hannover, Inst Theoret Phys, D-30167 Hannover, Germany
来源
关键词
noncommutative geometry; quantum groups; gauge symmetry;
D O I
10.1142/S0217751X08039888
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
The algebra of observables of planar electrons subject to a constant background magnetic field B is given by A(theta)(R-2) circle times A(theta)(R-2) (theta = -4/eB), the product of two mutually commuting Moyal algebras. It describes the free Hamiltonian and the guiding center coordinates. We argue that A(theta)(R-2) itself furnishes a representation space for the actions of these two Moyal algebras, and suggest physical arguments for this choice of the representation space. We give the proper setup to couple the matter fields based on A(theta)(R-2) to electromagnetic fields which are described by the Abelian commutative gauge group G(c)(U(1)), i.e. gauge fields based on A(0)(R-2). This enables us to give a manifestly gauge covariant formulation of integer quantum Hall effect (IQHE). Thus, we can view IQHE as an elementary example of interacting quantum topologies, where matter and gauge fields based on algebras A(theta)' with different theta' appear. Two-particle wave functions in this approach are based on A(theta)(R-2) circle times A(theta)(R-2). We find that the full symmetry group in IQHE, which is the semidirect product SO(2) x G(c)(U(1)) acts on this tensor product using the twisted coproduct Delta(theta). Consequently, as we show, many particle sectors of each Landau level have twisted statistics. As an example, we find the twisted two particle Laughlin wave functions.
引用
收藏
页码:1327 / 1336
页数:10
相关论文
共 50 条
  • [1] Robust quantum valley Hall effect for vortices in an interacting bosonic quantum fluid
    O. Bleu
    G. Malpuech
    D. D. Solnyshkov
    [J]. Nature Communications, 9
  • [2] Integer quantum Hall effect of interacting electrons in graphene
    Yan, Xin-Zhong
    Ting, C. S.
    [J]. PHYSICAL REVIEW B, 2017, 95 (07)
  • [3] Robust quantum valley Hall effect for vortices in an interacting bosonic quantum fluid
    Bleu, O.
    Malpuech, G.
    Solnyshkov, D. D.
    [J]. NATURE COMMUNICATIONS, 2018, 9
  • [4] Quantum Hall effect of interacting electrons in a periodic potential
    Pfannkuche, D
    MacDonald, AH
    [J]. PHYSICAL REVIEW B, 1997, 56 (12) : R7100 - R7103
  • [5] Bosonic Integer Quantum Hall Effect in an Interacting Lattice Model
    He, Yin-Chen
    Bhattacharjee, Subhro
    Moessner, R.
    Pollmann, Frank
    [J]. PHYSICAL REVIEW LETTERS, 2015, 115 (11)
  • [6] Quantum Hall effect in quantum electrodynamics
    Penin, Alexander A.
    [J]. PHYSICAL REVIEW B, 2009, 79 (11):
  • [7] Fractional Quantum Hall Effect and Wigner Crystal of Interacting Composite Fermions
    Liu, Yang
    Kamburov, D.
    Hasdemir, S.
    Shayegan, M.
    Pfeiffer, L. N.
    West, K. W.
    Baldwin, K. W.
    [J]. PHYSICAL REVIEW LETTERS, 2014, 113 (24)
  • [8] Cyclotron resonance of interacting quantum Hall droplets
    Widmann, M.
    Merkt, U.
    Cortes, M.
    Haeusler, W.
    Eberl, K.
    [J]. Physica B: Condensed Matter, 249-251 : 762 - 766
  • [9] Universal Hall Response in Interacting Quantum Systems
    Greschner, Sebastian
    Filippone, Michele
    Giamarchi, Thierry
    [J]. PHYSICAL REVIEW LETTERS, 2019, 122 (08)
  • [10] Cyclotron resonance of interacting quantum Hall droplets
    Widmann, M
    Merkt, U
    Cortes, M
    Hausler, W
    Eberl, K
    [J]. PHYSICA B-CONDENSED MATTER, 1998, 249 : 762 - 766