Congruences for Andrews’ (k, i)-singular overpartitions

被引:0
|
作者
Victor Manuel Aricheta
机构
[1] Emory University,Department of Mathematics and Computer Science
来源
The Ramanujan Journal | 2017年 / 43卷
关键词
Congruences for modular forms; Singular overpartitions; Eta-products; 05A17; 11F11; 11F20; 11P83;
D O I
暂无
中图分类号
学科分类号
摘要
Andrews recently defined new combinatorial objects which he called (k, i)-singular overpartitions and proved that they are enumerated by C¯k,i(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{C}_{k,i}(n)$$\end{document} which is the number of overpartitions of n in which no part is divisible by k and only the parts ≡±i(modk)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\equiv \pm i \pmod {k}$$\end{document} may be overlined. Andrews further showed that C¯3,1(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{C}_{3,1}(n)$$\end{document} satisfies some Ramanujan-type congruences modulo 3. In this paper, we show that for any pair (k, i), C¯k,i(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{C}_{k,i}(n)$$\end{document} satisfies infinitely many Ramanujan-type congruences modulo any power of prime coprime to 6k. We also show that for an infinite family of k, the value C¯3k,k(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{C}_{3k,k}(n)$$\end{document} is almost always even. Finally, we investigate the parity of C¯4k,k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{C}_{4k,k}$$\end{document}.
引用
收藏
页码:535 / 549
页数:14
相关论文
共 50 条
  • [31] Some congruences modulo power of 2 for Andrews' singular overpartition pairs
    Kathiravan, T.
    [J]. JOURNAL OF THE RAMANUJAN MATHEMATICAL SOCIETY, 2020, 35 (01) : 95 - 108
  • [32] An Andrews–Gordon type identity for overpartitions
    Doris D. M. Sang
    Diane Y. H. Shi
    [J]. The Ramanujan Journal, 2015, 37 : 653 - 679
  • [33] Density results for the parity of (4k, k)-singular overpartitions
    Aricheta, Victor Manuel
    Dimabayao, Jerome
    Shi, Hazel Joy
    [J]. JOURNAL OF NUMBER THEORY, 2024, 262 : 354 - 370
  • [34] Congruences for overpartitions with restricted odd differences
    Naika, M. S. Mahadeva
    Gireesh, D. S.
    [J]. AFRIKA MATEMATIKA, 2019, 30 (1-2) : 1 - 21
  • [35] Explicit congruences modulo 2048 for overpartitions
    Xue, Fanggang
    Yao, Olivia X. M.
    [J]. RAMANUJAN JOURNAL, 2021, 54 (01): : 63 - 77
  • [36] NEW CONGRUENCES MODULO 5 FOR OVERPARTITIONS
    Zhao, Tao Yan
    Jin, Lily J.
    [J]. COLLOQUIUM MATHEMATICUM, 2016, 145 (02) : 285 - 290
  • [37] Congruences modulo 64 and 1024 for overpartitions
    Yao, Olivia X. M.
    [J]. RAMANUJAN JOURNAL, 2018, 46 (01): : 1 - 18
  • [38] Congruences modulo 9 and 27 for overpartitions
    Ernest X. W. Xia
    [J]. The Ramanujan Journal, 2017, 42 : 301 - 323
  • [39] Congruences for overpartitions with restricted odd differences
    Hirschhorn, Michael D.
    Sellers, James A.
    [J]. RAMANUJAN JOURNAL, 2020, 53 (01): : 167 - 180
  • [40] Congruences modulo 64 and 1024 for overpartitions
    Olivia X. M. Yao
    [J]. The Ramanujan Journal, 2018, 46 : 1 - 18