A Deduction of the Hellmann-Feynman Theorem

被引:0
|
作者
Chen Feng
Cheng Wei
Bao-long Fang
Hong-yi Fan
机构
[1] Hefei University,Department of Mathematics and Physics
[2] University of Science and Technology of China,Department of Material Science and Engineering
关键词
Hellmann-Feynman (HF) theorem; Eigenenergy ; Hamiltonian ; The expectation value;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we present a deduction of the Hellmann-Feynman (HF) theorem for the lowest eigenenergy E0λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$E_{0}\left (\lambda \right ) $\end{document} of a Hamiltonian Hλ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ H\left (\lambda \right ) $\end{document}, that is : its second-order derivative with respect to he parameter λ,∂2E0∂λ2,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\lambda ,\frac {\partial ^{2}E_{0}}{\partial \lambda ^{2}},$\end{document} is always less than the expectation value of ∂2Hλ∂λ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\frac {\partial ^{2}H\left (\lambda \right ) }{\partial \lambda ^{2}}$\end{document} in the ground state. We also point out that the above deduction does not hold for the FH theorem in ensemble average. The electric polarizability of molecules is studied by the deduction of the HF theorem
引用
收藏
页码:1396 / 1401
页数:5
相关论文
共 50 条
  • [1] A Deduction of the Hellmann-Feynman Theorem
    Feng, Chen
    Wei, Cheng
    Fang, Bao-long
    Fan, Hong-yi
    [J]. INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2020, 59 (05) : 1396 - 1401
  • [2] INTEGRAL HELLMANN-FEYNMAN THEOREM
    KIM, HJ
    PARR, RG
    [J]. JOURNAL OF CHEMICAL PHYSICS, 1964, 41 (09): : 2892 - +
  • [3] CONSTRAINTS AND THE HELLMANN-FEYNMAN THEOREM
    EPSTEIN, ST
    [J]. THEORETICA CHIMICA ACTA, 1980, 55 (03): : 251 - 253
  • [4] AN EXTENDED HELLMANN-FEYNMAN THEOREM
    LEVINE, RD
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1966, 294 (1439): : 467 - &
  • [5] Generalization of the Hellmann-Feynman theorem
    Esteve, J. G.
    Falceto, Fernando
    Garcia Canal, C.
    [J]. PHYSICS LETTERS A, 2010, 374 (06) : 819 - 822
  • [6] The nontriviality of the Hellmann-Feynman theorem
    Pupyshev, VI
    [J]. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY, 2000, 74 : S267 - S278
  • [7] The Hellmann-Feynman theorem: a perspective
    Peter Politzer
    Jane S. Murray
    [J]. Journal of Molecular Modeling, 2018, 24
  • [8] SHORTCOMINGS OF THE HELLMANN-FEYNMAN THEOREM
    BROWN, CW
    [J]. PHYSICAL REVIEW LETTERS, 1980, 44 (16) : 1054 - 1057
  • [9] Hellmann-Feynman theorem at degeneracies
    Alon, OE
    Cederbaum, LS
    [J]. PHYSICAL REVIEW B, 2003, 68 (03):
  • [10] The Hellmann-Feynman theorem: a perspective
    Politzer, Peter
    Murray, Jane S.
    [J]. JOURNAL OF MOLECULAR MODELING, 2018, 24 (09)