Hellmann-Feynman theorem at degeneracies

被引:12
|
作者
Alon, OE [1 ]
Cederbaum, LS [1 ]
机构
[1] Univ Heidelberg, Inst Phys Chem, D-69120 Heidelberg, Germany
来源
PHYSICAL REVIEW B | 2003年 / 68卷 / 03期
关键词
D O I
10.1103/PhysRevB.68.033105
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The Hellmann-Feynman theorem is extended to account for degenerate states. Given a point lambda=lambda(0) in parameter space where the energy E(lambda(o)) is n-fold degenerate, it is shown that the corresponding n forces (slopes) are obtained by diagonalizing the derivative of the Hamiltonian, - partial derivativeH(lambda)/partial derivativelambda\(lambda=lambdao), in the subspace of degenerate eigenstates. Such a rotation within the subspace of degenerate eigenfunctions is easy and simple to apply in practical calculations and should be performed separately for each independent direction in parameter space for which the forces are to be calculated.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] A Deduction of the Hellmann-Feynman Theorem
    Chen Feng
    Cheng Wei
    Bao-long Fang
    Hong-yi Fan
    [J]. International Journal of Theoretical Physics, 2020, 59 : 1396 - 1401
  • [2] INTEGRAL HELLMANN-FEYNMAN THEOREM
    KIM, HJ
    PARR, RG
    [J]. JOURNAL OF CHEMICAL PHYSICS, 1964, 41 (09): : 2892 - +
  • [3] CONSTRAINTS AND THE HELLMANN-FEYNMAN THEOREM
    EPSTEIN, ST
    [J]. THEORETICA CHIMICA ACTA, 1980, 55 (03): : 251 - 253
  • [4] AN EXTENDED HELLMANN-FEYNMAN THEOREM
    LEVINE, RD
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1966, 294 (1439): : 467 - &
  • [5] A Deduction of the Hellmann-Feynman Theorem
    Feng, Chen
    Wei, Cheng
    Fang, Bao-long
    Fan, Hong-yi
    [J]. INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2020, 59 (05) : 1396 - 1401
  • [6] Generalization of the Hellmann-Feynman theorem
    Esteve, J. G.
    Falceto, Fernando
    Garcia Canal, C.
    [J]. PHYSICS LETTERS A, 2010, 374 (06) : 819 - 822
  • [7] The nontriviality of the Hellmann-Feynman theorem
    Pupyshev, VI
    [J]. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY, 2000, 74 : S267 - S278
  • [8] The Hellmann-Feynman theorem: a perspective
    Peter Politzer
    Jane S. Murray
    [J]. Journal of Molecular Modeling, 2018, 24
  • [9] SHORTCOMINGS OF THE HELLMANN-FEYNMAN THEOREM
    BROWN, CW
    [J]. PHYSICAL REVIEW LETTERS, 1980, 44 (16) : 1054 - 1057
  • [10] The Hellmann-Feynman theorem: a perspective
    Politzer, Peter
    Murray, Jane S.
    [J]. JOURNAL OF MOLECULAR MODELING, 2018, 24 (09)