A Riemannian version of Korn's inequality

被引:0
|
作者
Wenyi Chen
Jürgen Jost
机构
[1] Max Planck Institute for Mathematics in the Sciences,
[2] Inselstr. 22–26,undefined
[3] 04103 Leipzig,undefined
[4] Germany ,undefined
[5] Department of Mathematics,undefined
[6] Wuhan University,undefined
[7] Wuhan,undefined
[8] P. R. China 430072 ,undefined
关键词
Mathematics Subject Classification (1991): 73C02, 53B20;
D O I
暂无
中图分类号
学科分类号
摘要
We prove a Korn type inequality for vector fields on a Riemann manifold. This inequality includes the special cases proved in the literature for domains in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{R}^3$\end{document}. If the domain is convex, we can considerably weaken the needed assumption on the boundary values.
引用
收藏
页码:517 / 530
页数:13
相关论文
共 50 条
  • [41] A Note on Weighted Korn Inequality
    Jiang, Man Ru
    Jiang, Ren Jin
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2018, 34 (04) : 691 - 698
  • [42] A nonlinear Korn inequality on a surface
    Ciarlet, PG
    Gratie, L
    Mardare, C
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2006, 85 (01): : 2 - 16
  • [43] Inequality of Korn's type on compact surfaces without boundary
    Mardare, S
    CHINESE ANNALS OF MATHEMATICS SERIES B, 2003, 24 (02) : 191 - 204
  • [44] Korn's type inequality in subspaces and thin elastic structures
    Ovtchinnikov, E.E.
    Xanthis, L.S.
    Proceedings of the Royal Society of London, Series A: Mathematical, Physical and Engineering Sciences, 1997, 453 (1964): : 2003 - 2016
  • [45] A new Korn's type inequality for thin elastic structures
    Ovtchinnikov, EE
    Xanthis, LS
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1997, 324 (05): : 577 - 583
  • [46] A new Korn's type inequality for thin elastic structures
    Ovtchinnikov, E. E.
    Xanthis, L. S.
    Comptes Rendus De L'Academie Des Sciences. Serie I, Mathematique, 324 (05):
  • [47] On Korn's First Inequality in a Hardy-Sobolev Space
    Spector, Daniel E.
    Spector, Scott J.
    JOURNAL OF ELASTICITY, 2023, 154 (1-4) : 187 - 198
  • [48] BMO and Elasticity: Korn's Inequality; Local Uniqueness in Tension
    Spector, Daniel E.
    Spector, Scott J.
    JOURNAL OF ELASTICITY, 2021, 143 (01) : 85 - 109
  • [49] THE KORN INEQUALITY FOR JONES DOMAINS
    Duran, Ricardo G.
    Amelia Muschietti, Maria
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2004,
  • [50] A Note on Weighted Korn Inequality
    Man Ru Jiang
    Ren Jin Jiang
    Acta Mathematica Sinica, English Series, 2018, 34 : 691 - 698