Versatile anomaly detection method for medical images with semi-supervised flow-based generative models

被引:0
|
作者
Hisaichi Shibata
Shouhei Hanaoka
Yukihiro Nomura
Takahiro Nakao
Issei Sato
Daisuke Sato
Naoto Hayashi
Osamu Abe
机构
[1] The University of Tokyo Hospital,Department of Computational Diagnostic Radiology and Preventive Medicine
[2] The University of Tokyo Hospital,Department of Radiology
[3] The University of Tokyo,Department of Computer Science, Graduate School of Information Science and Technology
[4] RIKEN,Center for Advanced Intelligence Project
[5] The University of Tokyo,Division of Radiology and Biomedical Engineering, Graduate School of Medicine
关键词
Anomaly detection; Brain computed tomography; Chest X-ray; Deep learning; Semi-supervised;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:2261 / 2267
页数:6
相关论文
共 50 条
  • [21] An Efficient Semi-Supervised SVM for Anomaly Detection
    Kim, Junae
    Montague, Paul
    [J]. 2017 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2017, : 2843 - 2850
  • [22] SEMI-SUPERVISED CHANGE DETECTION BASED ON GRAPHS WITH GENERATIVE ADVERSARIAL NETWORKS
    Liu, Junfu
    Chen, Keming
    Xu, Guangluan
    Li, Hao
    Yan, Menglong
    Diao, Wenhui
    Sun, Xian
    [J]. 2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 74 - 77
  • [23] FRAnomaly: flow-based rapid anomaly detection from images
    Milkovic, Fran
    Posilovic, Luka
    Medak, Duje
    Subasic, Marko
    Loncaric, Sven
    Budimir, Marko
    [J]. APPLIED INTELLIGENCE, 2024, 54 (04) : 3502 - 3515
  • [24] FRAnomaly: flow-based rapid anomaly detection from images
    Fran Milković
    Luka Posilović
    Duje Medak
    Marko Subašić
    Sven Lončarić
    Marko Budimir
    [J]. Applied Intelligence, 2024, 54 : 3502 - 3515
  • [25] SEMI-SUPERVISED OBJECT DETECTION IN REMOTE SENSING IMAGES USING GENERATIVE ADVERSARIAL NETWORKS
    Chen, Guowei
    Liu, Lei
    Hu, Wenlong
    Pan, Zongxu
    [J]. IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 2503 - 2506
  • [26] A semi-supervised image segmentation method based on generative adversarial network
    Nie, Wei
    Gou, Peng
    Liu, Yang
    Zhou, Tianyu
    Xu, Nuo
    Wang, Peng
    Du, QiQi
    [J]. IEEE Joint International Information Technology and Artificial Intelligence Conference (ITAIC), 2022, 2022-June : 1217 - 1223
  • [27] Semi-Supervised Range-Based Anomaly Detection for Cloud Systems
    Deka, Pratyush Kr.
    Verma, Yash
    Bin Bhutto, Adil
    Elmroth, Erik
    Bhuyan, Monowar
    [J]. IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, 2023, 20 (02): : 1290 - 1304
  • [28] Semi-Supervised Bolt Anomaly Detection Based on Local Feature Reconstruction
    Peng, Yun
    Liu, Chuangwei
    Yan, Yi
    Ma, Nachuan
    Wang, Deming
    Liu, Chengju
    Chen, Qijun
    [J]. IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72
  • [29] A hybrid generative/discriminative method for semi-supervised classification
    Jiang, Zhen
    Zhang, Shiyong
    Zeng, Jianping
    [J]. KNOWLEDGE-BASED SYSTEMS, 2013, 37 : 137 - 145
  • [30] A method of intrusion detection based on semi-supervised GHSOM
    Yang, Shilai
    Yang, Yahui
    Shen, Qingni
    Huang, Haizhen
    [J]. Jisuanji Yanjiu yu Fazhan/Computer Research and Development, 2013, 50 (11): : 2375 - 2382