Analyzing kinetic signaling data for G-protein-coupled receptors

被引:0
|
作者
Sam R. J. Hoare
Paul H. Tewson
Anne Marie Quinn
Thomas E. Hughes
Lloyd J. Bridge
机构
[1] Pharmechanics,Department of Engineering Design and Mathematics
[2] LLC,undefined
[3] Montana Molecular,undefined
[4] University of the West of England,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
In classical pharmacology, bioassay data are fit to general equations (e.g. the dose response equation) to determine empirical drug parameters (e.g. EC50 and Emax), which are then used to calculate chemical parameters such as affinity and efficacy. Here we used a similar approach for kinetic, time course signaling data, to allow empirical and chemical definition of signaling by G-protein-coupled receptors in kinetic terms. Experimental data are analyzed using general time course equations (model-free approach) and mechanistic model equations (mechanistic approach) in the commonly-used curve-fitting program, GraphPad Prism. A literature survey indicated signaling time course data usually conform to one of four curve shapes: the straight line, association exponential curve, rise-and-fall to zero curve, and rise-and-fall to steady-state curve. In the model-free approach, the initial rate of signaling is quantified and this is done by curve-fitting to the whole time course, avoiding the need to select the linear part of the curve. It is shown that the four shapes are consistent with a mechanistic model of signaling, based on enzyme kinetics, with the shape defined by the regulation of signaling mechanisms (e.g. receptor desensitization, signal degradation). Signaling efficacy is the initial rate of signaling by agonist-occupied receptor (kτ), simply the rate of signal generation before it becomes affected by regulation mechanisms, measurable using the model-free analysis. Regulation of signaling parameters such as the receptor desensitization rate constant can be estimated if the mechanism is known. This study extends the empirical and mechanistic approach used in classical pharmacology to kinetic signaling data, facilitating optimization of new therapeutics in kinetic terms.
引用
收藏
相关论文
共 50 条
  • [21] Oligomerisation of G-protein-coupled receptors
    Milligan, G
    JOURNAL OF CELL SCIENCE, 2001, 114 (07) : 1265 - 1271
  • [22] G-protein-coupled receptors and melanoma
    Lee, Hwa Jin
    Wall, Brian
    Chen, Suzie
    PIGMENT CELL & MELANOMA RESEARCH, 2008, 21 (04) : 415 - 428
  • [23] Deorphanization of G-protein-coupled receptors
    Parmentier, M.
    Detheux, M.
    GPCRS: FROM DEORPHANIZATION TO LEAD STRUCTURE IDENTIFICATION, 2007, 2 : 163 - 186
  • [24] FINGERPRINTING G-PROTEIN-COUPLED RECEPTORS
    ATTWOOD, TK
    FINDLAY, JBC
    PROTEIN ENGINEERING, 1994, 7 (02): : 195 - 203
  • [25] G-protein-coupled receptors and cancer
    Dorsam, Robert T.
    Gutkind, J. Silvio
    NATURE REVIEWS CANCER, 2007, 7 (02) : 79 - 94
  • [26] Powdered G-Protein-Coupled Receptors
    Perera, Suchithranga M. D. C.
    Chawla, Udeep
    Brown, Michael F.
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2016, 7 (20): : 4230 - 4235
  • [27] Dimerization of G-protein-coupled receptors
    Dean, MK
    Higgs, C
    Smith, RE
    Bywater, RP
    Snell, CR
    Scott, PD
    Upton, GJG
    Howe, TJ
    Reynolds, CA
    JOURNAL OF MEDICINAL CHEMISTRY, 2001, 44 (26) : 4595 - 4614
  • [28] G-protein-coupled receptors and disease
    Perez, D
    RECEPTORS & CHANNELS, 2002, 8 (01): : 1 - 1
  • [29] Efficacy at G-protein-coupled receptors
    Kenakin, T
    NATURE REVIEWS DRUG DISCOVERY, 2002, 1 (02) : 103 - 110
  • [30] G-protein-coupled receptors:: an update
    Fredholm, B. B.
    Hokfelt, T.
    Milligan, G.
    ACTA PHYSIOLOGICA, 2007, 190 (01) : 3 - 7