Discrete time piecewise affine models of genetic regulatory networks

被引:0
|
作者
R. Coutinho
B. Fernandez
R. Lima
A. Meyroneinc
机构
[1] Instituto Superior Técnico,Departamento de Matemática
[2] Universités de Marseille I et II,Centre de Physique Théorique CNRS
来源
关键词
Discrete Time; Unit Circle; Periodic Oscillation; Contracting Mapping; Genetic System;
D O I
暂无
中图分类号
学科分类号
摘要
We introduce simple models of genetic regulatory networks and we proceed to the mathematical analysis of their dynamics. The models are discrete time dynamical systems generated by piecewise affine contracting mappings whose variables represent gene expression levels. These models reduce to boolean networks in one limiting case of a parameter, and their asymptotic dynamics approaches that of a differential equation in another limiting case of this parameter. For intermediate values, the model present an original phenomenology which is argued to be due to delay effects. This phenomenology is not limited to piecewise affine model but extends to smooth nonlinear discrete time models of regulatory networks.
引用
收藏
页码:524 / 570
页数:46
相关论文
共 50 条
  • [21] Time-optimal control of piecewise affine bistable gene-regulatory networks
    Augier, Nicolas
    Yabo, Agustin G.
    INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2023, 33 (09) : 4967 - 4988
  • [22] On the Stability of Piecewise Genetic Regulatory Networks
    Li, Jiewei
    Chesi, Graziano
    Shen, Tiandan
    WORLD CONGRESS ON ENGINEERING - WCE 2013, VOL II, 2013, : 1391 - 1396
  • [23] Symbolic Models and Control of Discrete-Time Piecewise Affine Systems: An Approximate Simulation Approach
    Pola, Giordano
    Di Benedetto, Maria Domenica
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2014, 59 (01) : 175 - 180
  • [24] Qualitative simulation of genetic regulatory networks using piecewise-linear models
    De Jong, H
    Gouzé, JL
    Hernandez, C
    Page, M
    Sari, T
    Geiselmann, J
    BULLETIN OF MATHEMATICAL BIOLOGY, 2004, 66 (02) : 301 - 340
  • [25] Qualitative simulation of genetic regulatory networks using piecewise-linear models
    Hidde de Jong
    Jean-Luc Gouzé
    Céline Hernandez
    Michel Page
    Tewfik Sari
    Johannes Geiselmann
    Bulletin of Mathematical Biology, 2004, 66 : 301 - 340
  • [26] Stability analysis of piecewise affine discrete-time systems
    Groff, Leonardo B.
    Valmorbida, Giorgio
    Gomes da Silva, Joao M., Jr.
    2019 IEEE 58TH CONFERENCE ON DECISION AND CONTROL (CDC), 2019, : 8172 - 8177
  • [27] Analysis of discrete-time piecewise affine and hybrid systems
    Ferrari-Trecate, G
    Cuzzola, FA
    Mignone, D
    Morari, M
    AUTOMATICA, 2002, 38 (12) : 2139 - 2146
  • [28] Formal Analysis of Discrete-Time Piecewise Affine Systems
    Yordanov, Boyan
    Belta, Calin
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2010, 55 (12) : 2834 - 2840
  • [29] Dynamic modularity in discrete-time models of regulatory networks
    Lima, R.
    Meyroneinc, A.
    Ugalde, E.
    CHAOS SOLITONS & FRACTALS, 2012, 45 (05) : 561 - 576
  • [30] Discrete optimization methods to fit piecewise affine models to data points
    Amaldi, E.
    Coniglio, S.
    Taccari, L.
    COMPUTERS & OPERATIONS RESEARCH, 2016, 75 : 214 - 230