Development of Magnetic Resonance Imaging Technique for Ultra Low Temperature Physics

被引:0
|
作者
Y. Sasaki
T. Ueno
K. Nishitani
H. Nakai
M. Fujisawa
K. Fukuda
T. Mizusaki
机构
[1] Kyoto University,Department of Physics, Graduate School of Science
[2] Kitashirakawa-Oiwake-cho,undefined
[3] Meiji University of Oriental Medicine,undefined
[4] Hiyoshi-cho,undefined
[5] Funai-gun,undefined
来源
关键词
Magnetic Resonance Image; Cell Wall; Contact Angle; Critical Temperature; Interfacial Tension;
D O I
暂无
中图分类号
学科分类号
摘要
We have developed a Magnetic Resonance Imaging (MRI) technique applicable for ultra low temperature physics. In contrast to conventional MRI for general use where a pulsed-field gradient method is commonly used, we used a steady-field gradient method to avoid an eddy current heating due to metallic parts around the sample cell. We applied the MRI for3He-4He mixture liquid with a critical concentration below 1 K and visualized the shape of the phase-separated boundary. We obtained two-dimensional space resolution of a few 10 μm. We extracted the interfacial tension of the boundary which was in good agreement with reported values. The contact angle of the boundary to the cell wall was small at low temperature and increased toward 90° near the critical temperature.
引用
收藏
页码:921 / 926
页数:5
相关论文
共 50 条
  • [31] Development of a Thermally Stable Phantom for Photoacoustic and Magnetic Resonance Temperature Imaging
    Dextraze, K.
    MacLellan, C.
    Mitcham, T.
    Melancon, M.
    Bouchard, R.
    MEDICAL PHYSICS, 2014, 41 (06)
  • [32] Myelin-Weighted Imaging with an Ultra-Low Field Portable Magnetic Resonance Imaging Scanner
    Dvorak, A. V.
    Balaji, S.
    Poorman, M. E.
    Sacolick, L.
    Teixeira, R. P. A. G.
    O'Halloran, R.
    Arlinghaus, L.
    Traboulsee, A.
    Williams, S. C. R.
    Deoni, S. C. L.
    Kolind, S. H.
    Ljungberg, E.
    MULTIPLE SCLEROSIS JOURNAL, 2022, 28 (3_SUPPL) : 959 - 960
  • [33] Assessment of ultra-high-field Magnetic Resonance Imaging safety via temperature increase monitoring with Magnetic Resonance Thermometry
    Biagi, Laura
    Gagliardi, Vito
    Retico, Alessandra
    Marletta, Massimo
    Aringhieri, Giacomo
    Tiberi, Gianluigi
    Campanella, Francesco
    Tosetti, Michela
    2020 IEEE INTERNATIONAL SYMPOSIUM ON MEDICAL MEASUREMENTS AND APPLICATIONS (MEMEA), 2020,
  • [34] USEFULNESS OF INTRAOPERATIVE ULTRA LOW-FIELD MAGNETIC RESONANCE IMAGING IN GLIOMA SURGERY
    Senft, Christian
    Seifert, Volker
    Hermann, Elvis
    Franz, Kea
    Gasser, Thomas
    NEUROSURGERY, 2008, 63 (04) : 257 - 266
  • [35] Temperature mapping with magnetic resonance imaging
    Feng, Suyun
    Peng, Yuhua
    2007 IEEE/ICME INTERNATIONAL CONFERENCE ON COMPLEX MEDICAL ENGINEERING, VOLS 1-4, 2007, : 604 - 608
  • [36] TEACHING MAGNETIC-RESONANCE-IMAGING PHYSICS TO PHYSICIANS
    SPRAWLS, P
    MEDICAL PHYSICS, 1987, 14 (03) : 506 - 506
  • [37] Physics of magnetic resonance imaging: from spin to pixel
    Gossuin, Yves
    Hocq, Aline
    Gillis, Pierre
    Vuong, Quoc Lam
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2010, 43 (21)
  • [38] Low-temperature magnetic resonance imaging with 2.8 μm isotropic resolution
    Chen, Hsueh-Ying
    Tycko, Robert
    JOURNAL OF MAGNETIC RESONANCE, 2018, 287 : 47 - 55
  • [39] Indications and technique of fetal magnetic resonance imaging
    Asenbaum, U.
    Brugger, P. C.
    Woitek, R.
    Furtner, J.
    Prayer, D.
    RADIOLOGE, 2013, 53 (02): : 109 - 115
  • [40] Advances in magnetic resonance technique for tumor imaging
    Park, Dong Woo
    JOURNAL OF THE KOREAN MEDICAL ASSOCIATION, 2015, 58 (06): : 516 - 522