Approximation algorithms for connected facility location problems

被引:0
|
作者
Mohammad Khairul Hasan
Hyunwoo Jung
Kyung-Yong Chwa
机构
[1] Korea Advanced Institute of Science and Technology,Division of Computer Science
来源
关键词
Approximation algorithms; Integer programming; LP-rounding; Connected facility location; Steiner tree;
D O I
暂无
中图分类号
学科分类号
摘要
We study Connected Facility Location problems. We are given a connected graph G=(V,E) with nonnegative edge cost ce for each edge e∈E, a set of clients D⊆V such that each client j∈D has positive demand dj and a set of facilities F⊆V each has nonnegative opening cost fi and capacity to serve all client demands. The objective is to open a subset of facilities, say \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\hat{F}$\end{document} , to assign each client j∈D to exactly one open facility i(j) and to connect all open facilities by a Steiner tree T such that the cost \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sum_{i\in \hat{F}}f_{i}+\sum_{j\in D}d_{j}c_{i(j)j}+M\sum_{e\in T}c_{e}$\end{document} is minimized for a given input parameter M≥1. We propose a LP-rounding based 8.29 approximation algorithm which improves the previous bound 8.55 (Swamy and Kumar in Algorithmica, 40:245–269, 2004). We also consider the problem when opening cost of all facilities are equal. In this case we give a 7.0 approximation algorithm.
引用
收藏
页码:155 / 172
页数:17
相关论文
共 50 条
  • [31] Algorithms for facility location problems with outliers
    Charikar, M
    Khuller, S
    Mount, DM
    Narasimhan, G
    PROCEEDINGS OF THE TWELFTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2001, : 642 - 651
  • [32] Approximation algorithms for hierarchical location problems
    Plaxton, CG
    JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 2006, 72 (03) : 425 - 443
  • [33] An Approximation Framework for Bounded Facility Location Problems
    Luo, Wenchang
    Su, Bing
    Xu, Yao
    Lin, Guohui
    COMPUTING AND COMBINATORICS (COCOON 2018), 2018, 10976 : 353 - 364
  • [34] Approximation Algorithms for a Facility Location Problem with Service Capacities
    Massberg, Jens
    Vygen, Jens
    ACM TRANSACTIONS ON ALGORITHMS, 2008, 4 (04)
  • [35] Approximation Algorithms for the Priority Facility Location Problem with Penalties
    Wang Fengmin
    Xu Dachuan
    Wu Chenchen
    JOURNAL OF SYSTEMS SCIENCE & COMPLEXITY, 2015, 28 (05) : 1102 - 1114
  • [36] Formulations and Approximation Algorithms for Multilevel Uncapacitated Facility Location
    Ortiz-Astorquiza, Camilo
    Contreras, Ivan
    Laporte, Gilbert
    INFORMS JOURNAL ON COMPUTING, 2017, 29 (04) : 767 - 779
  • [37] Approximation Algorithms for the Robust Facility Location Problem with Penalties
    Wang, Fengmin
    Xu, Dachuan
    Wu, Chenchen
    ADVANCES IN GLOBAL OPTIMIZATION, 2015, 95 : 129 - 135
  • [38] Approximation algorithms for the stochastic priority facility location problem
    Li, Gaidi
    Wang, Zhen
    Wu, Chenchen
    OPTIMIZATION, 2013, 62 (07) : 919 - 928
  • [39] Improved approximation algorithms for the uncapacitated facility location problem
    Chudak, FA
    Shmoys, DB
    SIAM JOURNAL ON COMPUTING, 2003, 33 (01) : 1 - 25
  • [40] Approximation Algorithms for the Priority Facility Location Problem with Penalties
    WANG Fengmin
    XU Dachuan
    WU Chenchen
    Journal of Systems Science & Complexity, 2015, 28 (05) : 1102 - 1114