A note on strongly π-regular rings

被引:0
|
作者
A. Y. M. Chin
机构
[1] University of Malaya,Institute of Mathematical Sciences, Faculty of Science
来源
Acta Mathematica Hungarica | 2004年 / 102卷
关键词
periodic; nilpotent; Jacobson radical; idempotent; regular; strongly ?-regular;
D O I
暂无
中图分类号
学科分类号
摘要
Let R be an associative ring with unit and let N(R) denote the set of nilpotent elements of R. R is said to be stronglyπ-regular if for each x∈R, there exist a positive integer n and an element y∈R such that xn=xn+1y and xy=yx. R is said to be periodic if for each x∈R there are integers m,n≥ 1 such that m≠n and xm=xn. Assume that the idempotents in R are central. It is shown in this paper that R is a strongly π-regular ring if and only if N(R) coincides with the Jacobson radical of R and R/N(R) is regular. Some similar conditions for periodic rings are also obtained.
引用
收藏
页码:337 / 342
页数:5
相关论文
共 50 条
  • [41] A NOTE ON STRONGLY CLEAN MATRIX RINGS
    Fan, Lingling
    Yang, Xiande
    COMMUNICATIONS IN ALGEBRA, 2010, 38 (03) : 799 - 806
  • [42] A note on completeness and strongly clean rings
    Diesl, Alexander J.
    Dorsey, Thomas J.
    Garg, Shelly
    Khurana, Dinesh
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2014, 218 (04) : 661 - 665
  • [43] LEFT ORDERS IN STRONGLY REGULAR-RINGS
    ANH, PN
    MARKI, L
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1993, 123 : 303 - 310
  • [44] CHARACTERIZATIONS OF STRONGLY REGULAR RINGS .2.
    LAJOS, S
    SZASZ, F
    PROCEEDINGS OF THE JAPAN ACADEMY, 1970, 46 (03): : 287 - &
  • [45] A GENERALIZATION OF STRONGLY REGULAR NEAR-RINGS
    DHEENA, P
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 1989, 20 (01): : 58 - 63
  • [46] STRONGLY REGULAR ELEMENTS OF NOETHERIAN-RINGS
    GOLDIE, A
    KRAUSE, G
    JOURNAL OF ALGEBRA, 1984, 91 (02) : 410 - 429
  • [47] Weakly and strongly regular near-rings
    Argac, N
    Groenewald, NJ
    ALGEBRA COLLOQUIUM, 2005, 12 (01) : 121 - 130
  • [48] Strongly Regular Gamma-Near Rings
    Selvaraj, C.
    George, R.
    SOUTHEAST ASIAN BULLETIN OF MATHEMATICS, 2011, 35 (02) : 329 - 344
  • [49] ON (STRONGLY) GORENSTEIN VON NEUMANN REGULAR RINGS
    Mahdou, Najib
    Tamekkante, Mohammed
    Yassemi, Siamak
    COMMUNICATIONS IN ALGEBRA, 2011, 39 (09) : 3242 - 3252
  • [50] AN INTERNAL CHARACTERIZATION OF STRONGLY REGULAR-RINGS
    HUANG, LS
    XUE, WM
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1992, 46 (03) : 525 - 528