Rock slope stability analysis and charts based on hybrid online sequential extreme learning machine model

被引:0
|
作者
Chao Deng
Huanxiao Hu
Tianle Zhang
Jiale Chen
机构
[1] Central South University,School of Geo
[2] Hunan Key Laboratory of Nonferrous Resources and Geological Hazards Exploration,sciences and Info
[3] Central South University,Physics
来源
Earth Science Informatics | 2020年 / 13卷
关键词
Rock slope stability; Landslide forecast; Hoek-Brown criterion; FOS-ELM model; Stability charts;
D O I
暂无
中图分类号
学科分类号
摘要
The stability of rock slopes is a difficult problem in the field of geotechnical and geological engineering. Less than 20% of all landslides are predictable each year, so a simple, fast, reliable and low-cost method to predict the stability of slopes is urgently needed. This study investigates a new regularized online sequential extreme learning machine, incorporated with the variable forgetting factor (FOS-ELM), based on intelligence computation to predict the factor of safety of a rock slope (F). The Bayesian information criterion (BIC) is applied to establish seven input combinations based on the parameters of the Hoek-Brown criterion and geometrical and mechanical parameters of the slope, such as the geological strength index (GSI), disturbance factor (D), rock material constant (mi), uniaxial compressive strength (σci), unit weight of the rock mass (γ), slope height (H) and slope angle (β). Seven models are established and evaluated to determine the optimal input combination. Various statistical indicators are calculated for the prediction accuracy examination. Compared to the classical extreme learning machine (ELM) model predictions of F, the results of the applied FOS-ELM model demonstrate a better prediction accuracy and are more effective when accounting for an increase in data. The FOS-ELM model with all seven input parameters is used to establish stability charts with the influence coefficient of slope angle change (ηβ), disturbance change (ηD) and slope height change (ηH). Using stability charts with a combination of ηβ, ηD and ηH can be used to quickly and preliminarily analyze rock stability as a guide for engineering practitioners in rock slope design.
引用
收藏
页码:729 / 746
页数:17
相关论文
共 50 条
  • [11] A Survey of Online Sequential Extreme Learning Machine
    Zhang, Senyue
    Tan, Wenan
    Li, Yibo
    2018 5TH INTERNATIONAL CONFERENCE ON CONTROL, DECISION AND INFORMATION TECHNOLOGIES (CODIT), 2018, : 45 - 50
  • [12] Online Extreme Learning Machine with Hybrid Sampling Strategy for Sequential Imbalanced Data
    Mao, Wentao
    Jiang, Mengxue
    Wang, Jinwan
    Li, Yuan
    COGNITIVE COMPUTATION, 2017, 9 (06) : 780 - 800
  • [13] Online Extreme Learning Machine with Hybrid Sampling Strategy for Sequential Imbalanced Data
    Wentao Mao
    Mengxue Jiang
    Jinwan Wang
    Yuan Li
    Cognitive Computation, 2017, 9 : 780 - 800
  • [14] Pathological Brain Detection Based on Online Sequential Extreme Learning Machine
    Lu, Siyuan
    Wang, Hainan
    Wu, Xueyan
    Wang, Shuihua
    PROCEEDINGS OF THE 2016 INTERNATIONAL CONFERENCE ON PROGRESS IN INFORMATICS AND COMPUTING (PIC), VOL 1, 2016, : 219 - 223
  • [15] Parallel ensemble of online sequential extreme learning machine based on MapReduce
    Huang, Shan
    Wang, Botao
    Qiu, Junhao
    Yao, Jitao
    Wang, Guoren
    Yu, Ge
    NEUROCOMPUTING, 2016, 174 : 352 - 367
  • [16] An Online Rapid Mesh Segmentation Method Based on an Online Sequential Extreme Learning Machine
    Zhao, Feiyu
    Sheng, Buyun
    Yin, Xiyan
    Wang, Hui
    Lu, Xincheng
    Zhao, Yuncheng
    IEEE ACCESS, 2019, 7 : 109094 - 109110
  • [17] An online sequential learning algorithm for regularized Extreme Learning Machine
    Shao, Zhifei
    Er, Meng Joo
    NEUROCOMPUTING, 2016, 173 : 778 - 788
  • [18] An incremental extreme learning machine for online sequential learning problems
    Guo, Lu
    Hao, Jing-hua
    Liu, Min
    NEUROCOMPUTING, 2014, 128 : 50 - 58
  • [19] Online sequential extreme learning machine in nonstationary environments
    Ye, Yibin
    Squartini, Stefano
    Piazza, Francesco
    NEUROCOMPUTING, 2013, 116 : 94 - 101
  • [20] A Constructive Enhancement for Online Sequential Extreme Learning Machine
    Lan, Yuan
    Soh, Yeng Chai
    Huang, Guang-Bin
    IJCNN: 2009 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1- 6, 2009, : 208 - 213