Multiscale analysis in Sobolev spaces on bounded domains

被引:0
|
作者
Holger Wendland
机构
[1] University of Oxford,Mathematical Institute
来源
Numerische Mathematik | 2010年 / 116卷
关键词
65J10; 46E35;
D O I
暂无
中图分类号
学科分类号
摘要
We study a multiscale scheme for the approximation of Sobolev functions on bounded domains. Our method employs scattered data sites and compactly supported radial basis functions of varying support radii at scattered data sites. The actual multiscale approximation is constructed by a sequence of residual corrections, where different support radii are employed to accommodate different scales. Convergence theorems for the scheme are proven, and it is shown that the condition numbers of the linear systems at each level are independent of the level, thereby establishing for the first time a mathematical theory for multiscale approximation with scaled versions of a single compactly supported radial basis function at scattered data points on a bounded domain.
引用
收藏
页码:493 / 517
页数:24
相关论文
共 50 条
  • [41] Nuclear embeddings in general vector-valued sequence spaces with an application to Sobolev embeddings of function spaces on quasi-bounded domains
    Haroske, Dorothee D.
    Leopold, Hans-Gerd
    Skrzypczak, Leszek
    JOURNAL OF COMPLEXITY, 2022, 69
  • [42] A characterization of weighted Sobolev spaces via weighted Riesz bounded variation spaces
    Cruz-Uribe, David
    Guzman, Oscar
    Rafeiro, Humberto
    STUDIA MATHEMATICA, 2024, 274 (03) : 287 - 304
  • [43] Spaces of functions with bounded variation and Sobolev spaces without local unconditional structure
    Pelczynski, A
    Wojciechowski, M
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2003, 558 : 109 - 157
  • [44] Characterization of Sobolev spaces by their Fourier coefficients in axisymmetric domains
    Costabel, Martin
    Dauge, Monique
    Hu, Jun-Qi
    CALCOLO, 2023, 60 (01)
  • [45] Sobolev spaces on Lie manifolds and regularity for polyhedral domains
    Ammann, Bernd
    Ionescu, Alexandru D.
    Nistor, Victor
    DOCUMENTA MATHEMATICA, 2006, 11 : 161 - 206
  • [46] Hardy!Sobolev spaces on strongly Lipschitz domains of Rn
    Auscher, P
    Russ, E
    Tchamitchian, P
    JOURNAL OF FUNCTIONAL ANALYSIS, 2005, 218 (01) : 54 - 109
  • [47] Bloch spaces on bounded symmetric domains in complex Banach spaces
    Deng Fangwen
    Ouyang Caiheng
    SCIENCE IN CHINA SERIES A-MATHEMATICS, 2006, 49 (11): : 1625 - 1632
  • [48] Bloch spaces on bounded symmetric domains in complex Banach spaces
    Fangwen Deng
    Caiheng Ouyang
    Science in China Series A: Mathematics, 2006, 49 : 1625 - 1632
  • [49] ENVELOPABLE SPACES FOR HP SPACES ON BOUNDED SYMMETRIC DOMAINS IN CN
    MITCHELL, J
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 23 (01): : A107 - A108
  • [50] Uniform concentration - Compactness for Sobolev spaces on variable domains
    Bucur, D
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2000, 162 (02) : 427 - 450