Matching Algorithms Are Fast in Sparse Random Graphs

被引:0
|
作者
Holger Bast
Kurt Mehlhorn
Guido Schafer
Hisao Tamaki
机构
[1] Max-Planck-Institut fur Informatik,
[2] Stuhlsatzenhausweg 85,undefined
[3] 66123 Saarbrucken,undefined
[4] Meiji University,undefined
[5] School of Science and Technology,undefined
[6] 1-1-1 HigashiMita,undefined
[7] Tama,undefined
[8] Kawasaki 214-8571,undefined
来源
关键词
High Probability; Computational Mathematic; Bipartite Graph; Relate Problem; Random Graph;
D O I
暂无
中图分类号
学科分类号
摘要
We present an improved average case analysis of the maximum cardinality matching problem. We show that in a bipartite or general random graph on n vertices, with high probability every non-maximum matching has an augmenting path of length O(log n). This implies that augmenting path algorithms like the Hopcroft-Karp algorithm for bipartite graphs and the Micali-Vazirani algorithm for general graphs, which have a worst case running time of O(m√n), run in time O(m log n) with high probability, where m is the number of edges in the graph. Motwani proved these results for random graphs when the average degree is at least ln (n) [Average Case Analysis of Algorithms for Matchings and Related Problems, Journal of the ACM, 41(6):1329-1356, 1994]. Our results hold if only the average degree is a large enough constant. At the same time we simplify the analysis of Motwani.
引用
收藏
页码:3 / 14
页数:11
相关论文
共 50 条
  • [31] Sampling Random Colorings of Sparse Random Graphs
    Efthymiou, Charilaos
    Hayes, Thomas P.
    Stefankovic, Daniel
    Vigoda, Eric
    SODA'18: PROCEEDINGS OF THE TWENTY-NINTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2018, : 1759 - 1771
  • [32] Fast scrambling on sparse graphs
    Bentsen, Gregory
    Gu, Yingfei
    Lucas, Andrew
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2019, 116 (14) : 6689 - 6694
  • [33] Fast recoloring of sparse graphs
    Bousquet, Nicolas
    Perarnau, Guillem
    EUROPEAN JOURNAL OF COMBINATORICS, 2016, 52 : 1 - 11
  • [34] Stochastic Matching on Uniformly Sparse Graphs
    Behnezhad, Soheil
    Derakhshan, Mahsa
    Farhadi, Alireza
    Hajiaghayi, MohammadTaghi
    Reyhani, Nima
    ALGORITHMIC GAME THEORY (SAGT 2019), 2019, 11801 : 357 - 373
  • [35] The matching energy of random graphs
    Chen, Xiaolin
    Li, Xueliang
    Lian, Huishu
    DISCRETE APPLIED MATHEMATICS, 2015, 193 : 102 - 109
  • [36] Fast Sparse RLS Algorithms
    Qin, Zhen
    Tao, Jun
    An, Liang
    Yao, Shuai
    Han, Xiao
    2018 10TH INTERNATIONAL CONFERENCE ON WIRELESS COMMUNICATIONS AND SIGNAL PROCESSING (WCSP), 2018,
  • [37] Algorithms based on the treewidth of sparse graphs
    Kneis, J
    Mölle, D
    Richter, S
    Rossmanith, P
    GRAPH-THEORETIC CONCEPTS IN COMPUTER SCIENCE, 2005, 3787 : 385 - 396
  • [38] Fast shared-memory algorithms for computing the minimum spanning forest of sparse graphs
    Bader, David A.
    Cong, Guojing
    JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING, 2006, 66 (11) : 1366 - 1378
  • [39] OPTIMAL PARALLEL ALGORITHMS FOR SPARSE GRAPHS
    PANTZIOU, GE
    SPIRAKIS, PG
    ZAROLIAGIS, CD
    LECTURE NOTES IN COMPUTER SCIENCE, 1991, 484 : 1 - 17
  • [40] Pebble game algorithms and sparse graphs
    Lee, Audrey
    Streinu, Ileana
    DISCRETE MATHEMATICS, 2008, 308 (08) : 1425 - 1437