Matching Algorithms Are Fast in Sparse Random Graphs

被引:0
|
作者
Holger Bast
Kurt Mehlhorn
Guido Schafer
Hisao Tamaki
机构
[1] Max-Planck-Institut fur Informatik,
[2] Stuhlsatzenhausweg 85,undefined
[3] 66123 Saarbrucken,undefined
[4] Meiji University,undefined
[5] School of Science and Technology,undefined
[6] 1-1-1 HigashiMita,undefined
[7] Tama,undefined
[8] Kawasaki 214-8571,undefined
来源
关键词
High Probability; Computational Mathematic; Bipartite Graph; Relate Problem; Random Graph;
D O I
暂无
中图分类号
学科分类号
摘要
We present an improved average case analysis of the maximum cardinality matching problem. We show that in a bipartite or general random graph on n vertices, with high probability every non-maximum matching has an augmenting path of length O(log n). This implies that augmenting path algorithms like the Hopcroft-Karp algorithm for bipartite graphs and the Micali-Vazirani algorithm for general graphs, which have a worst case running time of O(m√n), run in time O(m log n) with high probability, where m is the number of edges in the graph. Motwani proved these results for random graphs when the average degree is at least ln (n) [Average Case Analysis of Algorithms for Matchings and Related Problems, Journal of the ACM, 41(6):1329-1356, 1994]. Our results hold if only the average degree is a large enough constant. At the same time we simplify the analysis of Motwani.
引用
收藏
页码:3 / 14
页数:11
相关论文
共 50 条
  • [1] Matching algorithms are fast in sparse random graphs
    Bast, H
    Mehlhorn, K
    Schäfer, G
    Tamaki, H
    THEORY OF COMPUTING SYSTEMS, 2006, 39 (01) : 3 - 14
  • [2] Matching algorithms are fast in sparse random graphs
    Bast, H
    Mehlhorn, K
    Schäfer, G
    Tamaki, H
    STACS 2004, PROCEEDINGS, 2004, 2996 : 81 - 92
  • [3] PUSH IS FAST ON SPARSE RANDOM GRAPHS
    Meier, Florian
    Peter, Ueli
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2017, 31 (01) : 29 - 49
  • [4] Fast Generation of Sparse Random Kernel Graphs
    Hagberg, Aric
    Lemons, Nathan
    PLOS ONE, 2015, 10 (09):
  • [5] LIMITS OF LOCAL ALGORITHMS OVER SPARSE RANDOM GRAPHS
    Gamarnik, David
    Sudan, Madhu
    ANNALS OF PROBABILITY, 2017, 45 (04): : 2353 - 2376
  • [6] FAST PARALLEL ALGORITHMS FOR COLORING RANDOM GRAPHS
    KEDEM, ZM
    PALEM, KV
    PANTZIOU, GE
    SPIRAKIS, PG
    ZAROLIAGIS, CD
    LECTURE NOTES IN COMPUTER SCIENCE, 1992, 570 : 135 - 147
  • [7] Fast Approximation Algorithms for the Diameter and Radius of Sparse Graphs
    Roditty, Liam
    Williams, Virginia Vassilevska
    STOC'13: PROCEEDINGS OF THE 2013 ACM SYMPOSIUM ON THEORY OF COMPUTING, 2013, : 515 - 524
  • [8] A FAST PERFECT-MATCHING ALGORITHM IN RANDOM GRAPHS
    GOLDSCHMIDT, O
    HOCHBAUM, DS
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 1990, 3 (01) : 48 - 57
  • [9] An Experimental Analysis of Vertex Coloring Algorithms on Sparse Random Graphs
    Healy, Patrick
    Ju, Andrew
    APPLIED ALGORITHMS, 2014, 8321 : 174 - 186
  • [10] Markovian Online Matching Algorithms on Large Bipartite Random Graphs
    Mohamed Habib Aliou Diallo Aoudi
    Pascal Moyal
    Vincent Robin
    Methodology and Computing in Applied Probability, 2022, 24 : 3195 - 3225