Convergence Analysis of a LDG Method for Time–Space Tempered Fractional Diffusion Equations with Weakly Singular Solutions

被引:0
|
作者
Z. Safari
G. B. Loghmani
M. Ahmadinia
机构
[1] Yazd University,Department of Mathematics
[2] University of Qom,Department of Mathematics, Faculty of Science
来源
关键词
Tempered fractional derivative; Local discontinuous Galerkin method; Finite difference method; Graded mesh; Stability; Error Estimates; 35R11; 65M60; 65M12;
D O I
暂无
中图分类号
学科分类号
摘要
A class of time–space tempered fractional diffusion equations is considered in this paper. The solution of these problems generally have a weak singularity near the initial time t=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t = 0$$\end{document}. To solve the time–space tempered fractional diffusion equations, a fully discrete local discontinuous Galerkin (LDG) method is proposed. The basic idea is to apply LDG method in the space on uniform meshes and a finite difference method in the time on graded meshes to deal with the weak singularity at initial time t=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t = 0$$\end{document}. The discrete fractional Grönwall inequality is used to analyze the stability and convergence of the method. Numerical results show that the proposed method for time–space tempered fractional diffusion equation is accurate and reliable.
引用
收藏
相关论文
共 50 条
  • [41] Global solutions of nonlinear fractional diffusion equations with time-singular sources and perturbed orders
    Nguyen Minh Dien
    Nane, Erkan
    Nguyen Dang Minh
    Dang Duc Trong
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2022, 25 (03) : 1166 - 1198
  • [42] Convergence Analysis of the Spectral Methods for Weakly Singular Volterra Integro-Differential Equations with Smooth Solutions
    Wei, Yunxia
    Chen, Yanping
    ADVANCES IN APPLIED MATHEMATICS AND MECHANICS, 2012, 4 (01) : 1 - 20
  • [43] An efficient fractional polynomial method for space fractional diffusion equations
    Krishnaveni, K.
    Kannan, K.
    Balachandar, S. Raja
    Venkatesh, S. G.
    AIN SHAMS ENGINEERING JOURNAL, 2018, 9 (04) : 767 - 776
  • [44] Convergence analysis of space-time Jacobi spectral collocation method for solving time-fractional Schrodinger equations
    Yang, Yin
    Wang, Jindi
    Zhang, Shangyou
    Tohidi, Emran
    APPLIED MATHEMATICS AND COMPUTATION, 2020, 387
  • [45] Stability and Convergence Analysis of Finite Difference Schemes for Time-Dependent Space-Fractional Diffusion Equations with Variable Diffusion Coefficients
    Lin, Xue-lei
    Ng, Michael K.
    Sun, Hai-Wei
    JOURNAL OF SCIENTIFIC COMPUTING, 2018, 75 (02) : 1102 - 1127
  • [46] Stability and Convergence Analysis of Finite Difference Schemes for Time-Dependent Space-Fractional Diffusion Equations with Variable Diffusion Coefficients
    Xue-lei Lin
    Michael K. Ng
    Hai-Wei Sun
    Journal of Scientific Computing, 2018, 75 : 1102 - 1127
  • [47] Convergence analysis of a novel fractional product integration method for solving the second kind weakly singular Volterra integral equations with non-smooth solutions based on Jacobi polynomials
    Sajjadi, Sayed Arsalan
    Najafi, Hashem Saberi
    Aminikhah, Hossein
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2023, 100 (08) : 1794 - 1808
  • [48] Stability and convergence of a Crank-Nicolson finite volume method for space fractional diffusion equations
    Fu, Hongfei
    Sun, Yanan
    Wang, Hong
    Zheng, Xiangcheng
    APPLIED NUMERICAL MATHEMATICS, 2019, 139 : 38 - 51
  • [49] On self-similar solutions of time and space fractional sub-diffusion equations
    Al-Musalhi, Fatma
    Karimov, Erkinjon
    INTERNATIONAL JOURNAL OF OPTIMIZATION AND CONTROL-THEORIES & APPLICATIONS-IJOCTA, 2021, 11 (03): : 16 - 27
  • [50] Fourth-order numerical method for the space time tempered fractional diffusion-wave equation
    Dehghan, Mehdi
    Abbaszadeh, Mostafa
    Deng, Weihua
    APPLIED MATHEMATICS LETTERS, 2017, 73 : 120 - 127