Generalized cut and metric polytopes of graphs and simplicial complexes

被引:0
|
作者
Michel Deza
Mathieu Dutour Sikirić
机构
[1] École Normale Supérieure,
[2] Rudjer Bosković Institute,undefined
来源
Optimization Letters | 2020年 / 14卷
关键词
Max-cut problem; Cut polytope; Metrics; Graphs; Cycles; Quasi-metrics; Hemimetrics;
D O I
暂无
中图分类号
学科分类号
摘要
The metric polytope METP(Kn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathrm{METP}}}(K_n)$$\end{document} of the complete graph on n nodes is defined by the triangle inequalities x(i,j)≤x(i,k)+x(k,j)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x(i,j)\le x(i,k) + x(k,j)$$\end{document} and x(i,j)+x(j,k)+x(k,i)≤2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x(i,j) + x(j,k) + x(k,i)\le 2$$\end{document} for all triples i, j, k of {1,⋯,n}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{1,\dots ,n\}$$\end{document}. The cut polytope CUTP(Kn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathrm{CUTP}}}(K_n)$$\end{document} is the convex hull of the {0,1}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{0,1\}$$\end{document} vectors of METP(Kn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathrm{METP}}}(K_n)$$\end{document}. For a graph G on n vertices the metric polytope METP(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathrm{METP}}}(G)$$\end{document} and cut polytope CUTP(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathrm{CUTP}}}(G)$$\end{document} are the projections of METP(Kn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathrm{METP}}}(K_n)$$\end{document} and CUTP(Kn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathrm{CUTP}}}(K_n)$$\end{document} on the edge set of G. The facets of the cut polytopes are of special importance in optimization and are studied here in some detail for many simple graphs. Then we define variants QMETP(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathrm{QMETP}}}(G)$$\end{document} for quasi-metrics, i.e. not necessarily symmetric distances and we give an explicit description by inequalities. Finally we generalize distances to m-dimensional area between m+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m+1$$\end{document} points and this defines an hemimetric. In that setting the generalization of the notion of graph is the notion of m-dimensional simplicial complex K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {K}}$$\end{document} for which we define a cone of hemimetric HMET(K)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathrm{HMET}}}({\mathcal {K}})$$\end{document}.
引用
收藏
页码:273 / 289
页数:16
相关论文
共 50 条
  • [31] On simplicial partitions of polytopes
    A. A. Glazyrin
    Mathematical Notes, 2009, 85 : 799 - 806
  • [33] Generalized metric repair on graphs
    Fan, Chenglin
    Gilbert, Anna C.
    Raichel, Benjamin
    Sonthalia, Rishi
    van Buskirk, Gregory
    arXiv, 2019,
  • [34] Generalized metric repair on graphs
    Fan, Chenglin
    Gilbert, Anna C.
    Raichel, Benjamin
    Sonthalia, Rishi
    van Buskirk, Gregory
    Leibniz International Proceedings in Informatics, LIPIcs, 2020, 162
  • [35] On Constant Metric Dimension of Some Generalized Convex Polytopes
    Zuo, Xuewu
    Ali, Abid
    Ali, Gohar
    Siddiqui, Muhammad Kamran
    Rahim, Muhammad Tariq
    Asare-Tuah, Anton
    JOURNAL OF MATHEMATICS, 2021, 2021
  • [36] Foldings in graphs and relations with simplicial complexes and posets
    Fieux, E.
    Lacaze, J.
    DISCRETE MATHEMATICS, 2012, 312 (17) : 2639 - 2651
  • [37] k-SHELLABLE SIMPLICIAL COMPLEXES AND GRAPHS
    Rahmati-Asghar, Rahim
    MATHEMATICA SCANDINAVICA, 2018, 122 (02) : 161 - 178
  • [38] Increasing spanning forests in graphs and simplicial complexes
    Hallam, Joshua
    Martin, Jeremy L.
    Sagan, Bruce E.
    EUROPEAN JOURNAL OF COMBINATORICS, 2019, 76 : 178 - 198
  • [39] Simple Graphs as Simplicial Complexes: the Mycielskian of a Graph
    Rudnicki, Piotr
    Stewart, Lorna
    FORMALIZED MATHEMATICS, 2012, 20 (02): : 161 - 174
  • [40] Computing the edge metric dimension of convex polytopes related graphs
    Ahsan, Muhammad
    Zahid, Zohaib
    Zafar, Sohail
    Rafiq, Arif
    Sindhu, Muhammad Sarwar
    Umar, Muhammad
    JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS, 2021, 22 (02): : 174 - 188