On 3-colorability of planar graphs without adjacent short cycles

被引:0
|
作者
YingQian Wang
XiangHua Mao
HuaJing Lu
WeiFan Wang
机构
[1] Zhejiang Normal University,College of Mathematics, Physics and Information Engineering
[2] Ningbo Dahongying University,College of Basic Science
来源
Science China Mathematics | 2010年 / 53卷
关键词
planar graph; coloring; extension; cycle; 05C15; 68R10;
D O I
暂无
中图分类号
学科分类号
摘要
A short cycle means a cycle of length at most 7. In this paper, we prove that planar graphs without adjacent short cycles are 3-colorable. This improves a result of Borodin et al. (2005).
引用
收藏
页码:1129 / 1132
页数:3
相关论文
共 50 条
  • [31] 3-colorability of 4-regular Hamiltonian graphs
    Fleischner, H
    Sabidussi, G
    JOURNAL OF GRAPH THEORY, 2003, 42 (02) : 125 - 140
  • [32] The 3-colorability problem on graphs with maximum degree four
    Kochol, M
    Lozin, V
    Randerath, B
    SIAM JOURNAL ON COMPUTING, 2003, 32 (05) : 1128 - 1139
  • [33] (Δ+1)-total-colorability of plane graphs with maximum degree Δ at least 6 and without adjacent short cycles
    Zhang, Jingwen
    Wang, Yingqian
    INFORMATION PROCESSING LETTERS, 2010, 110 (18-19) : 830 - 834
  • [34] On 3-colorable planar graphs without short cycles
    Chen, Min
    Wang, Weifan
    APPLIED MATHEMATICS LETTERS, 2008, 21 (09) : 961 - 965
  • [35] A note on the linear 2-arboricity of planar graphs without adjacent short cycles
    Zhao, Zongzheng
    Yao, Mei
    Xu, Changqing
    International Journal of Applied Mathematics and Statistics, 2013, 51 (21): : 652 - 656
  • [36] Adjacent vertex distinguishing indices of planar graphs without 3-cycles
    Huang, Danjun
    Miao, Zhengke
    Wang, Weifan
    DISCRETE MATHEMATICS, 2015, 338 (03) : 139 - 148
  • [37] Acyclic 4-colorability of planar graphs without cycles of length 4 or 6
    Borodin O.V.
    Journal of Applied and Industrial Mathematics, 2010, 4 (04) : 490 - 495
  • [38] DP-4-colorability of planar graphs without intersecting 5-cycles
    Li, Xiangwen
    Lv, Jian-Bo
    Zhang, Mao
    DISCRETE MATHEMATICS, 2022, 345 (04)
  • [39] Acyclic edge coloring of planar graphs without adjacent cycles
    Min Wan
    BaoGang Xu
    Science China Mathematics, 2014, 57 : 433 - 442
  • [40] Edge Colorings of Planar Graphs without adjacent special cycles
    Ni, Wei-Ping
    ARS COMBINATORIA, 2012, 105 : 247 - 256