Efficient Network Representation Learning via Cluster Similarity

被引:0
|
作者
Yasuhiro Fujiwara
Yasutoshi Ida
Atsutoshi Kumagai
Masahiro Nakano
Akisato Kimura
Naonori Ueda
机构
[1] NTT Communication Science Labortories,
来源
关键词
Efficient; Algorithm; Network representation learning; Graph clustering;
D O I
暂无
中图分类号
学科分类号
摘要
Network representation learning is a de facto tool for graph analytics. The mainstream of the previous approaches is to factorize the proximity matrix between nodes. However, if n is the number of nodes, since the size of the proximity matrix is n×n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n \times n$$\end{document}, it needs O(n3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(n^3)$$\end{document} time and O(n2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(n^2)$$\end{document} space to perform network representation learning; they are significantly high for large-scale graphs. This paper introduces the novel idea of using similarities between clusters instead of proximities between nodes; the proposed approach computes the representations of the clusters from similarities between clusters and computes the representations of nodes by referring to them. If l is the number of clusters, since l≪n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l \ll n$$\end{document}, we can efficiently obtain the representations of clusters from a small l×l\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l \times l$$\end{document} similarity matrix. Furthermore, since nodes in each cluster share similar structural properties, we can effectively compute the representation vectors of nodes. Experiments show that our approach can perform network representation learning more efficiently and effectively than existing approaches.
引用
收藏
页码:279 / 291
页数:12
相关论文
共 50 条
  • [1] Efficient Network Representation Learning via Cluster Similarity
    Fujiwara, Yasuhiro
    Ida, Yasutoshi
    Kumagai, Atsutoshi
    Nakano, Masahiro
    Kimura, Akisato
    Ueda, Naonori
    DATA SCIENCE AND ENGINEERING, 2023, 8 (3) : 279 - 291
  • [2] ESRL: efficient similarity representation learning for deepfake detection
    Wang, Feng
    Zhang, Dengyong
    Guo, Zhiqing
    Wang, Dewang
    Yang, Gaobo
    MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (31) : 76991 - 77007
  • [3] Robust Representation Learning via Perceptual Similarity Metrics
    Taghanaki, Saeid Asgari
    Choi, Kristy
    Khasahmadi, Amir
    Goyal, Anirudh
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 139, 2021, 139 : 7045 - 7056
  • [4] Representation Similarity Analysis for Efficient Task Taxonomy & Transfer Learning
    Dwivedi, Kshitij
    Roig, Gemma
    2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 12379 - 12388
  • [5] Supervised Representation Learning for Network Traffic With Cluster Compression
    Wang, Xiaojuan
    Zhang, Yu
    He, Mingshu
    Guo, Shize
    Yang, Liu
    IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING, 2024, 9 (01): : 1 - 13
  • [6] Graph Representation Learning via Contrasting Cluster Assignments
    Zhang, Chun-Yang
    Yao, Hong-Yu
    Chen, C. L. Philip
    Lin, Yue-Na
    IEEE TRANSACTIONS ON COGNITIVE AND DEVELOPMENTAL SYSTEMS, 2024, 16 (03) : 912 - 922
  • [7] Molecular Graph Representation Learning via Structural Similarity Information
    Yao, Chengyu
    Huang, Hong
    Gao, Hang
    Wu, Fengge
    Chen, Haiming
    Zhao, Junsuo
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES: RESEARCH TRACK, PT III, ECML PKDD 2024, 2024, 14943 : 351 - 367
  • [8] Attributed network representation learning via DeepWalk
    Wei, Hao
    Pan, Zhisong
    Hu, Guyu
    Hu, Guyu
    Yang, Haimin
    Li, Xin
    Zhou, Xingyu
    INTELLIGENT DATA ANALYSIS, 2019, 23 (04) : 877 - 893
  • [9] Efficient Unsupervised Visual Representation Learning with Explicit Cluster Balancing
    Metaxas, Ioannis Maniadis
    Tzimiropoulos, Georgios
    Patras, Ioannis
    COMPUTER VISION - ECCV 2024, PT XXXII, 2025, 15090 : 436 - 454
  • [10] Robust Representation Learning via Sparse Attention Mechanism for Similarity Models
    Ermilova, Alina
    Baramiia, Nikita
    Kornilov, Valerii
    Petrakov, Sergey
    Zaytsev, Alexey
    IEEE ACCESS, 2024, 12 : 97833 - 97850